Гитара без мифологии - страница 4





забыли рассказать. А оно гораздо проще для понимания.

Если вы сожмете рукой обычный кистевой эспандер, почувствуете силу, стремящуюся распрямить эспандер, и чем дольше будете его удерживать, тем лучше будете её чувствовать. Когда же вы его отпустите, он примет обычную свою форму.

При сжатии в нем возникло то самое механическое напряжение, а потом снялось.

Когда вы натягивание струну на гитаре, так явственно возникающее в ней напряжение не чувствуете, а оно возникает, и нарастает. И если вы перетянете струну, она лопнет. Напряжение превысит предел прочности, и разрешится в разрыв струны.

Величина механического напряжения выражается как сила, делённая на площадь, к которой она приложена. Для струны совсем просто: сила натяжения на площадь поперечного сечения керна.

Оно-то и понижает декремент затухания материала, и повышает добротность струны. Теперь нам понятно, почему карбоновые струны дают больше сустейна и обертонов, чем нейлоновые, а металлические больше, чем карбоновые. Сечение струны обратно пропорционально плотности материала, следовательно, напряжение ей прямо пропорционально.

Вот так струны из материала с высоким декрементом затухания обретают приемлемую добротность. Но всё же приходится слышать жалобы гитаристов-классиков на фальшь ля-большого на 6-й струне. На 5-й нет, а на 6-й есть! Дело в том, что 5-я и 6-я струны навиваются на одинаковый керн, чуть ли не с одной бобины, а 6-я обычно делается на меньшую силу натяжения. Соответственно, у неё ниже добротность, и она подвергается девиации от резонанса задней деки.

Вы могли заметить, что с ростом напряжения повышается собственная частота тела, в данном случае струны, но при этом ещё и понижается декремент затухания. И в нейлоновых струнах он достигает вполне приемлемых величин.

Напряжение в струне повышает не только добротность, но и склонность к образованию обертонов. До некоторого уровня оно улучшает звучание, однако при чрезмерно высоких значениях звук становится надсадным, неприятным.

Усилие натяжения струн передаётся и несущей конструкции, так же создавая в ней напряжение, и повышая добротность её резонансов. Особенно это заметно на передних деках акустических инструментов. И если добротность деки ниже оптимального значения, её можно повысить, создав дополнительные напряжения при помощи пружин. Пружина сгибается так же, как выгибаются обечайки, и приклеивается к деке внатяг. Так же небольшое напряжение создают некоторые лакокрасочные материалы, особенно нитроцеллюлозные.

1.7. Акустическая константа (К)

Вторым по значимости акустическим свойством материалов является акустическая константа. Почему её называют константой, совершенно непонятно, это скорее имя собственное данного свойства. И даже названия у единиц её измерения нет. И даже выражают её по-разному: в одних источниках К ели =12, в других =1200. Хорошо, что в 100 раз, легко пересчитывать, и не перепутаешь.

Чем же она полезна? Во-первых, она отражает излучательную способность материала, что важно для дек акустических струнных инструментов. Выше К материала деки, громче звучание. Во-вторых, частота резонансного тела прямо пропорциональна К материала (с незначительными отклонениями). Поэтому формирование частоты резонанса той или иной детали инструмента начинается с подбора материала с нужной К.

Самая простая формула К=скорость звука/плотность. Однако замер скорости звука дело сложное, поэтому более практична формула К=(Е/р