Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 - страница 29




Двунаправленная языковая модель (Bidirectional language model) – это языковая модель, которая определяет вероятность того, что данный маркер присутствует в заданном месте в отрывке текста на основе предыдущего и последующего текста.


Двунаправленность (Bidirectional) – это термин, используемый для описания системы оценки текста, которая одновременно исследует предшествующий и последующий разделы текста от целевого раздела.


Двусмыссленная фраза (Crash blossom) – это предложение или фраза с двусмысленным значением. Crash blossom представляет серьезную проблему для понимания естественного языка. Например, заголовок «бить баклуши» является Crash blossom, потому что нейронная сеть с пониманием естественного языка может интерпретировать заголовок буквально или образно.


Дедуктивный классификатор (Deductive classifier) – это тип механизма вывода искусственного интеллекта. Он принимает в качестве входных данных набор деклараций на языке кадра об области, такой как медицинские исследования или молекулярная биология. Классификатор определяет, являются ли различные описания логически непротиворечивыми, и если нет, то выделяет конкретные описания и несоответствия между ними.


Дедукция (Deductive Reasoning) – это способ рассуждения и доказательства на основе перехода от более общих положений к частным, один из способов прогнозирования развития и изложения материала; эффективен, когда у исследователя уже накоплен определенный опыт и знания в изучаемой области.


Действие (Action) (в обучении с подкреплением) – это механизм, с помощью которого агент переходит между состояниями среды. Агент выбирает действие с помощью политики.


Декларативное программирование (Declarative programming) – это парадигма программирования, в которой задаётся спецификация решения задачи, то есть описывается ожидаемый результат, а не способ его получения. Противоположностью декларативного является императивное программирование, при котором на том или ином уровне детализации требуется описание последовательности шагов для решения задачи.


Декомпрессия(Decompression) – это функция, которая используется для восстановления данных в несжатую форму после сжатия.


Демографический паритет (Demographic parity) – это метрика справедливости, которая удовлетворяется, если результаты классификации модели не зависят от данного конфиденциального атрибута.


Дерево поведения (Behavior tree) – это ориентированный ациклический граф, узлами которого являются возможные варианты поведения робота. «Ширина» дерева указывает на количество доступных действий, а «длина» его ветвей характеризует их сложность. Деревья поведения имеют некоторое сходство с иерархическими конечными автоматами с тем ключевым отличием, что основным строительным блоком поведения является задача, а не состояние. Простота понимания человеком делает деревья поведения менее подверженными ошибкам и очень популярными в сообществе разработчиков игр.


Дерево проблем (решений) или логическое дерево (Issue tree) – это денотативное (отражающее ситуацию) представление процесса принятия решений, представленное в виде графической разбивки задачи, разделенное на отдельные компоненты по вертикали и горизонтали. Деревья решений в искусственном интеллекте используются для того, чтобы делать выводы на основе данных, доступных из решений, принятых в прошлом. Деревья решений – это статистические алгоритмические модели машинного обучения, которые интерпретируют и изучают ответы на различные проблемы и их возможные последствия. В результате деревья решений знают правила принятия решений в конкретных контекстах на основе доступных данных.