ИИ-агент в когнитивном программировании сознания – объединяем RAG и LLM - страница 5
1.4.5 Категоризация данных
Пример: Создание категорийного справочника
Организуйте данные по ключевым темам, чтобы упростить поиск и обработку.
```json
{
"categories": {
"Теория": ["Основы когнитивного программирования", "Принципы командного мышления"],
"Методологии": ["Модель мышления команд"],
"Кейсы": ["Внедрение когнитивных моделей"]
}
}
```
Этот справочник можно использовать для фильтрации данных в интерфейсе тренажера.
1.4.6 Верификация данных
Пример: Проверка на полноту и точность
После создания базы знаний проведите автоматизированную проверку данных, чтобы выявить ошибки и пропуски.
```python
def verify_data(data):
for item in data:
if not item.get("title") or not item.get("content"):
print(f"Ошибка: Не хватает данных в элементе {item}")
if "keywords" not in item or not item["keywords"]:
print(f"Предупреждение: Отсутствуют ключевые слова в {item['title']}")
# Пример проверки
data = [
{"title": "Основы когнитивного программирования", "content": "Описание…", "keywords": []},
{"title": "Модель мышления команд", "content": "Описание модели…"}
]
verify_data(data)
```
Этот скрипт позволяет находить неполные записи, чтобы устранить их до запуска системы.
Эти практические примеры помогут эффективно организовать, сегментировать и верифицировать данные для создания базы знаний, полностью готовой к интеграции с когнитивным тренажером.
1.5 Векторизация данных
Цель: Преобразование текста в векторное представление для эффективного поиска релевантной информации.
Методы:
Word Embeddings: Используйте модели, такие как Word2Vec или GloVe, для базовой векторизации слов.
Sentence Embeddings: Модели Sentence Transformers (например, `all-MiniLM-L6-v2`) позволяют создавать компактные векторы для предложений.
Contextual Embeddings: BERT или RoBERTa для учета контекста слов в предложении.
Шаги:
Предварительная обработка текста: Проверьте токенизацию, удалите стоп-слова (если это необходимо).
Обучение или использование предобученных моделей: Используйте библиотеки, такие как Hugging Face Transformers.
Построение индекса векторов: сохраните векторы в формате, поддерживаемом Faiss или Pinecone.
Пример кода:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
texts = ["Когнитивное программирование – это…", "Основы работы сознания…"]
vectors = model.encode(texts)
# Сохранение вектора в базе
import faiss
index = faiss.IndexFlatL2(len(vectors[0]))
index.add(vectors)
```
Практические примеры для этапа векторизации данных
1.5.1 Векторизация текстов с использованием Word2Vec
Пример: Генерация векторов для отдельных слов
Если ваша база знаний включает много специализированных терминов, используйте Word2Vec для создания векторов слов, которые отражают их контекстное значение.
```python
from gensim.models import Word2Vec
# Пример текстов
sentences = [
["когнитивное", "программирование", "оптимизация"],
["командное", "взаимодействие", "модель"],
]
# Обучение Word2Vec модели
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)
# Получение вектора для слова "когнитивное"
vector = model.wv["когнитивное"]
print(vector)
```
Этот метод подходит для задач, где требуется анализ отдельных слов или построение простой семантической карты.
1.5.2 Sentence Embeddings для предложений и абзацев
Пример: Создание векторов для поисковой системы
Если пользователь задает запрос в свободной форме, используйте Sentence Transformers для создания векторов предложений.