Интеллект-стек 2023 - страница 3
Мышление определим как ту функцию/поведение интеллекта, которое даёт эффективность в научении решению самых разных проблем. Эффективность – это с какой скоростью при равных затратах ресурсов оператор/владелец интеллекта (человек, машина, коллектив людей и машин) чему-то может научиться, с учётом разнообразия возможных к научению решений проблем. Научиться – это от «проблемы» (не знаю, как решать эту проблему с доступными ресурсами) перейти к «задаче» (знаю практику, имею мастерство решить задачу с доступными ресурсами, могу оценить потребное время).
Дальше всё больше и больше мир приходит к консенсусу по самым разным не слишком очевидным вещам:
• «проблемы» понимаются как неприятные сюрпризы, которые ожидаются в будущем, а решение проблем – их предотвращение («похоже, зимой будет холодно и можно замёрзнуть насмерть – надо построить дом и запастись топливом для обогрева»).
• Learning/обучение/познание перестали понимать как обучение одного организма коровы, или человека, или одного экземпляра нейронной сети с момента рождения до момента, когда можно уже обнаруживать проблемы и решать их. Более того, даже для организма начали делить на «предобучение» (prelearning, именно это чаще всего у людей называют «познание», в AI это обучение «голой» нейросетки до уровня большой языковой модели, LLM) до уровня, когда можно уже разговаривать, «настройку на предметную область» (finetune, аналог «прохождения курсов»), few shot learning (понимание объяснения на буквально нескольких примерах), in-context learning (понимание того, что происходят прямо в текущей ситуации). Но в целом начали говорить, что обучение идёт на нескольких уровнях: аппаратуры (эволюция, геном), накопленное организмами и передающееся на каких-то носителях знание (мемом), и уже после этого – что там происходит с обучением организма.
• Интеллект перестали считать вычислителем, который учится ровно таким способом, каким учатся животные или люди. В физике «вычислителем» называют что угодно, что имеет память – неэргодические системы. Изменение состояния памяти – это и есть вычисление. Тут же стало можно говорить о степенях «умности» даже для молекулы, имеющей какие-то свои состояния.
Но нас по-прежнему волнует вопрос обучения отдельного человека или отдельного экземпляра GAI (общего для самых разных типов проблем искусственного интеллекта, который по своей «умности» как-то сравним с интеллектом человеческим, или даже превышает человеческий интеллект, иногда называемый «естественным»).
Характеристики силы интеллекта (силы мышления, «умности») предлагались самые разные, например «вменяемость»/persuadability5 как лёгкость в обучении агента с каким-то уровнем интеллекта. Скажем, часы можно обучить показывать что-то другое, только изменив их конструкцию. Кошку можно обучить, задействовав какую-то дрессировку, повторениями каких-то ситуаций в реальном мире и затем подкрепление правильного поведения вознаграждением. А вот человеку (взрослому! Познавшему уже достаточно, чтобы понимать речь!) достаточно что-то просто сказать: это очень быстро, крайне энергоэффективно. Современный AI оказался крайне вменяемым (это стало очевидно с публикацией 14 марта 2023 года языковой модели GPT-4 фирмы OpenAI).
При этом «агентом» иногда начали называть что угодно, от молекулы до человечества, а иногда – только системы, показывающие какую-то степень умения что-то спланировать в будущем и затем выполнить этот план, достигнув намеченной цели. Скажем, если обезьяна видит банан на дереве и планирует затем маршрут к банану в обход препятствий, то – точно агент. Если инфузория просто ползёт по градиенту к где-то растворяемому в жидкости кусочку сахара – иногда агент, а иногда – не агент, ибо не может планировать свои действия. И тут же выяснилось, что понятие «агент» очень нечётко определено, скажем, человеческие детёныши из «не очень агента» переходят в «явно уже агент» довольно растянуто во времени, нет чёткой границы.