Интеллект-стек 2023 - страница 49
Если вы умеете читать, то вы просто читаете, задействуете привычное мастерство чтения, а не мыслите про чтение. Если вы умеете считать, то вы просто считаете. Работа интеллекта, мышление нужно было, когда вы знакомились с чтением и письмом, осваивали эти дисциплины. Мышление у вас работает в вузе, когда вам нужно разобраться за пару месяцев с очередной парой толстых томов с формулами. А когда вы уже пятый год на работе просто применяете эти формулы, вы это делаете автоматически, мышления не происходит – пока вы не встречаетесь с проблемой, которой раньше не было. Только в этот момент вы включаете мозг, ту его часть, которая ответственная за интеллект. И эта часть начинает работать – эта работа и есть мышление. Если проблем долго нет, то мозг пластичен: мышление не включается, пластичный мозг потихоньку деградирует, сила интеллекта потихоньку падает. В текущем году это падение с лихвой компенсировано информационно-коммуникационными технологиями: раньше нужно было «придумать решение проблемы», сегодня нужно «не забыть погуглить решение проблемы». Проще простого перейти в режим неинтеллектуальной обезьянки, которая проблемы не решает, но бодро щёлкает задачки, на которые она была надрессирована раньше – и так живёт годами, пока не окажется, что интеллект совсем зачах, прошивка мозга устарела, жизнь несётся мимо, и непонятно как вернуть те времена, когда интеллект в ходе обучения и решения проблем непрерывно усиливался, а не деградировал. Интеллект должен расти всю жизнь, это не дело, когда мышлением люди занимаются последний раз в вузе!
Напомним, что поведение вычислителя определяется не только и даже в силу универсальности вычислителей, не столько аппаратурой (хотя скорость работы аппаратуры и физика в основе работы аппаратуры – биологические нейроны, классическая электроника, квантовые явления влияют на поведение вычислителя), сколько программным обеспечением, «софтом». Тезис Тьюринга-Чёрча-Дойча про универсальность вычислителя говорит, что все вычислители независимо от физической их природы умеют вычислять ровно столько же видов функций, сколько простейшая машина Тьюринга, просто скорость вычисления будет разная. Этот тезис подробно раскрывается Дэвидом Дойчем в его книжках. И вообще, граница между аппаратурой и софтом весьма размыта.
Мы это для случая интеллекта-вычислителя и мышления как его вычислений формулируем так, что интеллект может быть не только врождённый «аппаратный» (человеческий, машинный, человеко-машинный, коллективный для людей и машин как аппаратных вычислителей, пришедших «с завода», без «предустановленного софта», необразованных), но и выученный/learned. И машины, и люди, и даже коллективы должны быть обучены, чтобы в них появился «софт» алгоритмов сильного интеллекта. Врождённого интеллекта никогда не хватает!
Можно говорить как об усилении интеллекта (вычислитель как функциональный объект), так и об усилении мышления (поведение вычислителя, его функция) – по сути, это одно и то же. «Мышление» неуловимо, как и любое поведение/работа: процессы сложно представлять, их сложно обсуждать. А интеллект как функциональная часть мозга, ответственный за освоение нового мастерства – вполне понятно, как о нём думать. В нужный момент, при появлении новой задачи, он включается, и начинает мыслить, то есть мастерить другую функциональную часть мозга, которая называется «прикладное мастерство» и будет ответственна за рассуждения по решению «на автомате» какого-то класса прикладных задач. Или даже какое-то мастерство (например, в логике) может быть ответственно за решение «на автомате» задач самого интеллекта! Поэтому развиваем интеллект (в инженерии было бы «создаём и развиваем», но мы не создаём врождённый интеллект в людях, а только развиваем его. Но в случае AI мы этот интеллект ещё и создаём), а уже потом развитый/усиленный интеллект проявляет сильное мышление во время его использования.