Искусство цвета. Цветоведение: теория цветового пространства - страница 19
Все цвета окружающих нас тел обусловливаются вышеизложенными явлениями. Прозрачные тела мы видим благодаря тем лучам света, которые, вследствие их частичного отражения с их поверхности, попадают в наш глаз. Когда разница в степени преломления (по сравнению с воздухом) мала, как, например, у различных газов, то такие тела не доступны нашему зрению. Если имеется частичное поглощение, то тела видятся нами как прозрачные цветные, как, например, цветные стекла, вода, многие драгоценные камни и т. д.
Если тело состоит из множества маленьких частиц с различными показателями преломления, то свет не может там проложить себе длинного прямого пути. Поэтому они не прозрачны. Если при этом нет заметного поглощения, то свет рассеивается и отражается; такие тела нам кажутся белыми.
Чаще всего в этом случае одной из составных частей такой смеси является воздух. При рассмотрении белых тканей под микроскопом мы видим прозрачные волокна, при рассмотрении белых порошков мы видим прозрачные кристаллики или частицы таковых; как те, так и другие заключают в промежутках между собой воздух. То же наблюдается и у всех других белых тел. Особенно характерно это для таких белых красящих веществ, как свинцовые белила, цинковые белила, мел и т. д. которые состоят из прозрачных, мелких, сильно преломляющих зернышек. Они кроют тем лучше, чем больше их преломляющая способность.
Хроматические (цветные) тела отличаются от белых только тем, что прозрачные кристаллики или волокна проявляют избирательное поглощение; непоглощенные же лучи отражаются и обусловливают цвет. Абсолютно непрозрачных веществ не существует; зато часты вещества с малым коэффициентом прозрачности. Непрозрачность большинства тел объясняется тем, что они состоят из оптическиразличных частиц довольно значительных размеров (немногим меньше 0,001 мм), которые дают сильное отражение и являются препятствием для прохождения света. У металлов мы наблюдаем особенности, обусловливающие их блеск; но и металлы при достаточном размельчении становятся прозрачными.
Таким образом, большинство цветов внешнего мира зависит от поглощательной способности твердых тел. Поэтому при спектральном анализе цветов тел мы видим, что их отраженный свет, который и является причиной их окраски, состоит из широкой полосы близких друг к другу световых волн. Рядом с ними находятся темные полосы или области поглощения. У ярких цветных тел эти области занимают приблизительно половину спектра. Очень часто мы встречаем область поглощения в середине спектра, как раз в зеленом цвете. Тогда отражаются световые волны обоих концов спектра, с одной стороны красные, а с другой – фиолетовые и синие. Эту смесь цветов мы воспринимаем целостно, как однородный цвет (как это бывает и при всех других смесях), и она дает нам ряд не встречающихся в спектре розовокрасных, синекрасных и пурпурных цветов. В дальнейшем мы будем иметь возможность их изучить. Красящие вещества естественного и искусственного происхождения с поглощением в зеленой части спектра встречаются весьма часто.
До сих пор рассмотренные нами свойства света выявляются в таких измерениях, которые велики по сравнению с длиной отдельной световой волны, и эта последняя не оказывала поэтому на них влияния. Но имеется еще и другая группа важных свойств, которые обусловливаются непосредственно длиною световых волн. Самое важное из них – диффракция света. Если мы пропустим солнечный свет через узкую щель в темную комнату, и в образовавшуюся узкую полосу света поместим волос или другой темный предмет, то получится не простая тень. Эта тень будет состоять из узкой средней линии, по обеим сторонам которой расположатся параллельные светлые и темные полоски, при более тщательном исследовании оказывающиеся хроматическими (цветными). В этом случае свет проходит не просто по прямой линии: его лучи, как будто «загибаясь», попадают в геометрическую область тени, отчего этот процесс и получил название «загибания» (Beugung), или диффракция света.