Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - страница 3



Уравнение неразрывности среды. Если в среде не образуется разрывов (как, например, разрывы при кавитации), то уравнение неразрывности применимо к исследуемой среде.

Рассмотрим объем среды, ограниченный неподвижной поверхностью S. Если разрывов нет, то приращение массы в объеме равно массе среды, втекшей через поверхность S. Запишем скорость приращения массы в малом объеме, массу, втекающая за единицу времени через элемент поверхности dS, равную v dS.

Заменяя интеграл по поверхности интегралом по объему, получим уравнение неразрывности в виде (2.3).

Уравнение неразрывности скалярно и, как уравнение Эйлера, нелинейно относительно характеристик среды. В дальнейшем встретятся случаи движения среды, удовлетворяющие вместо уравнения неразрывности уравнению вида (2.4).

Это уравнение можно также интерпретировать как уравнение неразрывности, но примененное к среде, куда поступает «из ниоткуда» дополнительное «стороннее» количество среды. Величину Vст называют плотностью сторонней объемной скорости: она дает дополнительный объем, поступающий за единицу времени в единичный объем.

Уравнение состояния связывает давление, плотность (или сжатие) и температуру среды. Уравнение состояния не имеет какого-либо стандартного вида для всех веществ, наподобие уравнения Эйлера или уравнения неразрывности. В общем виде уравнение можно записать в виде (2.5).

Уравнение состояния также нелинейно.

Если при данном движении среды плотность однозначно связана с давлением (так бывает обычно в акустике), то уравнение состояния можно записать в виде (2.6).

Система уравнений (2.1), (2.3) и (2.5) или (2.6) является полной системой уравнений гидродинамики.

Волновое уравнение. Полная система уравнений гидродинамики это – нелинейные, точные уравнения. В дальнейшем будем пользоваться приближенными уравнениями линейного типа. Исключая все величины, характеризующую волну, кроме давления приведем полную систему уравнений акустики к одному уравнению относительно давления p (2.7).

Это волновое уравнение второго порядка для давления, где с – скорость звука.

Если записать выражение для давления гармонического колебания волн и затем подставить его в волновое уравнение (2.7), то получим волновое уравнения Гельмгольца (2.8).


Математическая модель электромагнитного поля

Математическая модель электромагнитного поля представляет систему уравнений электромагнитного поля в полном виде или систему уравнений Максвелла [4].

Электромагнитное поле характеризуются следующими векторными величинами: E и H – векторы напряженности электрического и магнитного полей, D и B – векторы электрической и магнитной индукции, I и Im – плотность токов электрической и магнитной проводимости, ρ и ρ>m – плотность электрических и магнитных зарядов.

Дифференциальная форма системы уравнений выглядит (3.1 – 3.7), где – магнитная проницаемость, – диэлектрическая проницаемость, – удельная проводимость

Эти уравнения будут исходными при рассмотрение переменных электромагнитных полей и процессов.

Первое уравнение Максвелла. является дифференциальной формулировкой закона полного тока. Физический смысл 1-го уравнения Максвелла: источниками вихревых магнитных полей являются токи проводимости и токи смещения.

Величина δ в правой части (3.1) есть плотность тока проводимости. Это вектор, указывающий направление движения зарядов.

Законы электромагнетизма – это законы макроскопических процессов, в которых усредняется действие огромных количеств элементарных частиц материи. С точки зрения этих законов, среда представляется сплошной.