Исследование новых и нестандартных видов модуляции на основе OFDM-технологии - страница 6
С помощью модернизированной программы А. В. Вагина [7], где расчет многолучевой картины ведется для множества поднесущих частот, построим передаточную функцию канала. Импульсная характеристика должна представлять сумму функций кронекера, находящихся на соответствующих временах задержки и обладающих соответствующими коэффициентами ослабления. На рис. 1.1 представлены увеличенные значения импульсной характеристики, на которых расположены функции Кронекера. За счет шага дискретизации функция немного размыта.
На рис. 1.1 лучи располагаются примерно на выборках 122937, 122961, 123357, 123371, 123375, 123384, что соответствует временам 122937/18000 c = 6.8298 c, 122961/18000 c = 6.8312 c, 123357/18000 c = 6.8532 c, 123371/18000 c = 6.8539 c, 123375/18000 c = 6.8542 c, 123384/18000 c = 6.8547 c, что соответствует рассчитанным в программе А. В. Вагина задержкам лучей. При этом временной разброс составляет величину порядка нескольких мс. Результат расчета затухания в канале связи показан на рис. 1.2.
A
Б
Рисунок 1.1 – Импульсная характеристика подводного акустического канала в разных масштабах (А, Б)
На рис. 1.2 рассчет проведен по 3-м известным формулам, описывающим зависимость затухания от частоты для гидроаккустических сигналов. Р. А. Вадов и Франкойс-Гаррисон занимались исследованиями затухания в гидроакустическом канале связи, и результаты их работ представляются в программном обеспечении Акустического института им. ак. Н. Н. Андреева. Для вычислений использованы следующие параметры [7]:
% % Баренцево море
% f = [1.5:0.02:4.5] %Частота в кГц
% z=100; % Глубина в метрах
% t=2; % температура в град. Цельсия
% s=34.5; % солёность в промиле
% pH=8; % – кислотность
% XLAT=70; % Широта мало влияет, можно взять константой
Рисунок 1.2 – Результат расчета коэффициента затухания в дБ/км в зависимости от частоты
Считая, что модель затухания в Баренцевом море близка к модели затухания в Охотском море, можно принять вышеуказанные данные для расчета каждой точки H>f передаточной функции канала:
(1.4)
где L – номер луча, Nl – номер последнего луча, I>L + i. >QL – комплексное число передаточной функции на конкретной частоте, модуль которого является амплитудой луча a>L, зависящей от коэффициентов фокусировки, отражения от дна и отражения от поверхности. А аргумент этого числа – фаза луча φ>L. Необходимо рассчитывать структуру поля для нескольких частотных значений H>f1, H>f2, … H>fn, чтобы получить передаточную функцию H. Операция ОБПФ от этой функции даст импульсную характеристику устройства h, описываемую формулой (1.3).
OFDM-сигнал на входе приемной части, прошедший через канал связи, без учета многолучевости и АБГШ может быть представлен с помощью следующей формулы с текущей частотой f>r (n) с номером гармоники n, с числом гармоник K>c, данных I and Q (соответственно, синфазная и квадратурная составляющие), включающие в себя пилот-сигналы и нулевые составляющие:
(1.5)
Текущая частота содержит сдвиг Доплера вследствие эффекта Доплера в канале связи (v и c – соответственно, скорости перемещающегося объекта и света, α – угол между векторами скорости) и разницу между эталонными частотами передатчика и приемника f>diff, f>0 – несущая частота и f>c – частотный разнос:
При рассмотрении факта многолучевости можно дополнить эту модель, добавив дополнительную сумму в выражение (1.5) для каждой составляющей многолучевого канала, характеризуемой своей случайной амплитудой, фазой и временной задержкой. После данной операции необходимо добавить АБГШ. Но ограничимся пока формулой (1.5), так как для добавления многолучевости удобно производить расчет через импульсную характеристику канала связи.