Как рождалось Солнце - страница 7
Теперь об их собственном вращении вокруг своих осей. Если ЧД вращались, то в момент первого касания должна пойти мощная волна. Схожую ситуацию можно наблюдать в соревнованиях «Формула-1». При наезде догоняющего болида передним колесом на заднее колесо первого, из зоны контакта выбрасывается сноп искр, затем – разогрев и разрушение разогретых колёс. Поэтому амплитудный всплеск от соприкосновения ЧД должен быть в самом начале, а не в конце, после чего – спад импульса, т. е. импульс должен быть отзеркален по горизонтали (рис. 1.2).
Нужно отметить, что все выступающие на презентации гравитационных волн делали пассы руками, по которым даже глухонемой мог догадаться о вращательном движении ЧД.
1.5. Интерпретация сигнала от слияния двух ЧД
Теперь вернёмся к показанным и расшифрованным на конференции импульсам, зафиксированным двумя детекторами в Livingston & Hanford.
Общие высказывания представителей коллаборации сводились к следующему: «И, судя по профилю сигнала, произошло действительно редкое и масштабное событие – слияние чёрных дыр массами в 36 и 29 раз больше массы Солнца на расстоянии около 1,3 млрд световых лет от нас. Менее чем за секунду они образовали дыру массой 62 солнечных, а “лишние” 4 массы Солнца были выброшены в форме энергии – в основном в виде гравитационной волны» [15].
Рис. 1.2. Два наложенных сигнала от двух установок, картинка из презентации. Об открытии стало известно в ходе трансляции пресс-конференции. Зарегистрированные гравитационные волны испущены двумя сливающимися чёрными дырами (общей массой около 6 °Cолнц) на расстоянии 1,5 млрд св. лет от Земли
На рис. 1.2 показано совпадение наложенных сигналов по частоте. Смотрим на амплитуду, по которой, опять же на основании уравнений Эйнштейна, определили удалённость ЧД от Земли. Заметьте, сигнал получен после того, как преодолел расстояние в 1 млрд 300 млн световых лет! Решиться на такое смелое высказывание можно, только в случае что это действительно достоверный факт, – но проверить его никак невозможно!
Проанализируем сигнал, полученный в двух лабораториях LIGO. На презентации было показано три картинки – наложенные сигналы двух детекторов Livingston и Hanford (рис. 1.2) и сигналы от каждого детектора по отдельности (рис. 1.3). (Мной вырезаны фрагменты с 0,35 сек. до 0,45 сек.)
Синий график (рис. 1.3, слева) идентичен на обоих рисунках, но оранжевый (справа) не совпадает, что видно невооружённым глазом. Я проанализировал сигналы, полученные на разных детекторах, а для визуализации соединил вершины импульсов. Что меня смутило и насторожило? Сравните, как разнятся амплитуды от разных детекторов, приведённые на рис. 1.2, с рис. 1.3 (оранжевый сигнал).
Рис. 1.3. Сравнение сигналов от слияния ЧД по амплитуде. Картинки из презентации. (Автором добавлены белые линии по вершинам импульсов и номера амплитудных колебаний)
Картина похожая на отражение в зеркале, если смотреть по низам. Кроме того, по амплитуде определялось расстояние до космического столкновения двух чёрных монстров, а поскольку это событие произошло более миллиарда лет тому назад, то амплитудные сигналы должны быть идентичные. А если амплитуды разные, то сигнал прилетел от источника, который находился на близком расстоянии. Напомню, интерферометры разделены расстоянием в 3 тыс. км.
По частоте экспериментаторы с помощью уравнений Эйнштейна подсчитали массу ЧД. Относительно отношения сигнал ⁄ шум есть хороший анализ А. Гришаева, где указывается: