Когда любовь стремится к бесконечности. Роман - страница 18




Пределы с неопределенностью вида и метод их решения



Сейчас мы рассмотрим группу пределов, когда, а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены



Пример:

Вычислить предел



Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида. Можно было бы подумать, что, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.




Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:


Старшая степень в числителе равна двум.




Теперь смотрим на знаменатель и тоже находим в старшей степени:


Старшая степень знаменателя равна двум.




Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени.




Разделим числитель и знаменатель на





Вот оно как, ответ, а вовсе не бесконечность.



Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак, он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.



В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:


Для пометок лучше использовать простой карандаш.



Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел

Снова в числителе и знаменателе находим в старшей степени:


Максимальная степень в числителе: 3

Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.

Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на.

Полное оформление задания может выглядеть так:








Разделим числитель и знаменатель на




Пример 3

Найти предел

Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 (можно записать как)

Для раскрытия неопределенности необходимо разделить числитель и знаменатель на. Чистовой вариант решения может выглядеть так:








Разделим числитель и знаменатель на




Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.



Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число, ноль или бесконечность.



Пределы с неопределенностью вида и метод их решения



Предвосхищаю вопрос от чайников: «Почему здесь деление на ноль? На ноль же делить нельзя!». Смысл записи 0:0 будет понятен позже, после ознакомления с четвёртым уроком о бесконечно малых функциях. А пока всем начинающим изучать математический анализ предлагаю читать далее.

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу.

Пример 4

Решить предел

Сначала попробуем подставить -1 в дробь:


В данном случае получена так называемая неопределенность.