Концепции современного естествознания. Учебное пособие - страница 17
Особое место в концепции И. Ньютона занимает учение о силе тяготения, или гравитации, в котором он объединяет движение «небесных» и земных тел. Это учение включает утверждения:
1) тяжесть тела пропорциональна заключенному в нем количеству материи или массы;
2) сила тяжести пропорциональна массе;
3) сила тяжести, или тяготение, и есть та сила, которая действует между Землей и Луной обратно пропорционально квадрату расстояния между ними;
4) эта сила тяготения действует между всеми материальными телами на расстоянии.
В отношении природы силы тяготения И. Ньютон говорил: «Гипотез не измышляю».
Механика Галилея – Ньютона, развитая в работах Д. Аламбера, Ж. Л. Лагранжа, П. С. Лапласа, У. Р. Гамильтона, получила в итоге стройную форму, определяющую физическую картину мира того времени. Эта картина основывалась на принципах самотождественности физического тела; его независимости от пространства и времени; детерминированности, т. е. строгой однозначной причинно-следственной связи между конкретными состояниями физических тел; обратимости всех физических процессов.
2. Термодинамика
Исследования процесса превращения теплоты в работу и обратно, осуществленные в XIX в. С. Кално, Р. Майером, Д. Джоулем, Г. Гемгольцем, Р. Клаузиусом, У. Томсоном (лордом Кельвином), привели к выводам, о которых Р. Майер писал: «Движение, теплота… электричество представляют собой явления, которые измеряются друг другом и переходят друг в друга по определенным законам»[3]. Г. Гемгольц обобщает это утверждение Р. Майера в вывод: «Сумма существующих в природе напряженных и живых сил постоянна»[4]. Уильям Томсон уточнил понятия «напряженные и живые силы» до понятий потенциальной и кинетической энергии, определив энергию как способность совершать работу. Р. Клаузиус обобщил эти идеи в формулировке: «Энергия мира постоянна». Так совместными усилиями сообщества физиков был сформулирован фундаментальный для всего физического знания закон сохранения и превращения энергии.
Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона – закона возрастания энтропии. «Переход теплоты от более холодного тела к более теплому, – писал Р. Клаузиус, – не может иметь места без компенсации»[5]. Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей, существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму, называют вторым началом термодинамики. Первое начало – закон сохранения и превращения энергии.
Принцип возрастания энтропии поставил перед физической мыслью ряд проблем: соотношения обратимости и необратимости физических процессов, формальности сохранения энергии, не способной совершать работу при температурной однородности тел. Все это требовало более глубокого обоснования начал термодинамики, прежде всего природы тепла.
Попытку такого обоснования предпринял Людвиг Больцман, который пришел, опираясь на молекулярно-атомное представление о природе теплоты, к выводу о статистическом характере второго закона термодинамики, т. к. вследствие огромного числа молекул, составляющих макроскопические тела, и чрезвычайной быстроты и хаотичности их движения мы наблюдаем лишь