Ксилотрофные базидиомицеты в чистой культуре - страница 11



После воздействия грибов возрастает массовая доля кислорода и понижается содержание метоксильных групп (Фенгел, Вегенер, 1988). Увеличение содержания кислорода происходит в результате окисления α-углеродных атомов и окислительной деструкции связей между β- и γ-углеродными атомами пропановой цепи (Fengel, Wegener, 1979). Модельные опыты с различными метоксилированными фенолами показали, что грибы белой гнили деметилируют метоксильные группы. Опыты с меченым (>14С) лигнином свидетельствуют, что при разложении лигнина грибами белой гнили (Coriolus versicolor, Phanerochaete chrysosporium) конечный продукт метаболизма СО>2 образуется главным образом из метоксильных групп и в небольшой степени из углерода пропановых цепей и ароматических колец (Фенгел, Вегенер, 1988). Таким образом, практически не остается сомнений относительно включения функциональных групп лигнина в метаболические процессы грибов белой гнили.

Дальнейшие реакции приводят к получению мономерных и димерных соединений, большинство из которых содержат карбоксильные группы. Для включения этих соединений во внутренний обмен веществ гриба необходимо также, по-видимому, и расщепление ароматических колец. Среди ферментов грибов идентифицировали диоксигеназы, осуществляющие деметилирование ванилиновой и вератровой кислот – мономеров, которые были найдены в продуктах деструкции лигнина под действием грибов (рис. 3) (Chen et al., 1981).


Рисунок 3 – Окислительное расщепление ванилиново й кислоты под действием диоксигеназ


Расщепление ароматических колец возможно не только у мономерных продуктов деструкции. Ароматические кольца в лигнинном полимере также, по-видимому, расщепляются ферментами (Kirk et al., 1976; Chen et al., 1981).

На расщепление ароматических колец указывают >13С-ЯМРспектры искусственного лигнина, зараженного грибами белой гнили. Происходит также разрыв арилэфирных связей и расщепление пропановых цепей. Изменение состава продуктов ацидолиза древесины березы, пораженной белой гнилью, позволило заключить, что деструкция лигнина происходит на пораженной поверхности, которая прогрессирующе увеличивается. Макромолекулы практически не подвергаются фрагментации. Процесс деструкции заключается в отщеплении концевых групп (Фенгел, Вегенер, 1988).

Лигнин, очевидно, включается в метаболизм грибов не полностью, так как некоторая часть его превращается в высоко-конденсированный продукт. Реакции, обратные ферментативной деструкции, обнаружили и при выращивании грибов Heterobasidion annosum и Coriolus versicolor на лигнине молотой древесины, сульфатном лигнине и лигносульфонатах (Cote, 1968). Модельные эксперименты указывают на образование бифенильных структур в результате ферментативной дегидратации. Эту реакцию, по-видимому, вызывает лакказа, так как добавка ингибиторов лакказы предотвращает конденсацию. Добавление целлюлозы к культуре Pleurotus ostreatus на лигносульфонатах ингибировало реакции образования полимеров (Crawford, 1981). Целлюлоза превращается в целлобиозу – совместный субстрат (косубстрат) для целлобиозохиноноксидоредуктазы. Этот фермент уменьшает число фенольных радикалов и тем самым ингибирует полимеризацию.

Конденсированные лигнины, содержащие дифенильные связи, проявляют высокую устойчивость к действию ферментов грибов (Chen et al., 1981). В лиственном лигнине и искусственном гваяцил-сирингильном лигнине сирингильные элементы подвергаются деструкции быстрее, чем гваяцильные. Это объясняется большим содержанием в гваяцильной части лигнина дифенильных структур, у которых фенольные гидроксильные группы не склонны к образованию феноксильных радикалов (Фенгел, Вегенер, 1988).