Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - страница 24



, определяющий ускорение свободного падения g(R) в точке, удаленной на расстояние R от небесного тела массы M

g(R) = GM/R>2,

здесь G – константа, одинаковая для любого небесного тела, а значит, константа фундаментальная.

Как Галилей мог открыть общий закон свободного падения

Исследуя свободное падение, Галилей выяснил, что шар, брошенный горизонтально в пустоте, падает по параболе, форма которой определяется начальной скоростью V и ускорением свободного падения g: при этом скорость движения по горизонтали сохраняется V>г= V, а по вертикали растет со временем V>в= gt.

Сделаем мысленный эксперимент, поднявшись вместе с мысленным Галилеем на легендарную башню. Будем бросать шары горизонтально со все большей скоростью. Если скорость броска мала, шар упадет – по крутой параболе – на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.

Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно “вниз”?

На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли R ≈ 6000 км, а ускорение свободного падения g ≈ 10 м/сек>2. Эти величины, как и теорему Пифагора, знал также и Галилей. И мог получить, что искомая скорость связана с g и R соотношением

V>2= gR

и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.

Однако Галилей легко обнаружил бы, что лунные величины R ≈ 400 000 км и V ≈ 1 км/сек никак не укладываются в полученное соотношение. А чтобы уложились, нужно значение g, примерно в 3600 раз меньшее измеренного Галилеем на поверхности Земли. Расстояние до Луны больше радиуса Земли примерно в 60 раз, а 60 60 = 3600. Отсюда Галилей мог предположить, что ускорение свободного падения g меняется с удалением от Земли обратно пропорционально квадрату расстояния R:

g ~ 1/ R>2.

Отсюда, с учетом предыдущего соотношения, следует, что скорость спутника меняется с расстоянием R от небесного тела:

V ~ 1/ R>1/2.

А если небесное тело имеет несколько спутников, то для них всех величина VR>1/2 одна и та же.

Подтвердить это свойство Галилей мог на им же открытых спутниках Юпитера. Беря нынешние значения и предполагая круговые орбиты, получим:

Подтвердили бы это и спутники Солнца, то есть планеты (орбиты которых близки к круговым).

Так закон свободного падения, установленный в земных физических опытах, поднялся бы до астрономических высот. И так Галилей пришел бы к новому закону природы, который мог назвать общим законом свободного падения: ускорение свободного падения на расстоянии R от центра небесного тела


g(R) = A/R>2,


где А – некая константа, определяемая свойствами небесного тела.

Из наблюдательных данных Галилей мог вычислить соотношения таких констант для Земли, Юпитера и Солнца:


A>Юпитера≈ 300 A>Земли,

A>Солнца≈ 300 000 A>Земли.


Глядя на эти три величины, характеризующие Землю, Юпитер и Солнце, естественно было спросить, какие различия небесных тел ведут к различиям их констант A. Из явных различий в размере, в количестве вещества (массе) и в состоянии светимости легче всего предположить, что величина A пропорциональна массе небесного тела M: A = GM с неким коэффициентом G (который тоже можно грубо оценить, считая среднюю плотность Земли близкой к плотности ее твердых пород).