Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData - страница 11



Tesla T4: 1GPU 16GB GDDR6 0.35$/час Tesla P4: 1GPU 8GB GDDR5 0.60$/час Tesla V100: 1GPU 16GB HBM2 2.48$/час Tesla P100: 1GPU 16GB HBM2 1.46$/час

Попробуем. Перейдём по ссылке colab.research.google.com и нажмём кнопку "создать блокнот". У нас появится пустой Notebook. Можно ввести выражение:

10**3 / 2 + 3

и нажав на воспроизведение – получим результат 503.0. Можно вывести график параболы, нажав кнопку "+Код" в введя в новую ячейку код:

def F(x): return x*x import numpy as np import matplotlib.pyplot as plt x = np.linspace(–5, 5, 100) y = list(map(F, x)) plt.plot(x, y) plt.ylabel("Y") plt.xlabel("X")

Или выведя ещё и изображение:

import os !wget https://www.python.org/static/img/python–logo.png import PIL img = PIL.Image.open("python–logo.png") img

Популярные фреймворки:

* Caffe, Caffe2, CNTK, Kaldi, DL4J, Keras – набор модулей для конструирования;

* TensorFlow, Theano, MXNet – программирование графа;

* Torch и PyTorch – прописать основные параметры, а граф будет построен автоматически.

Рассмотрим работу библиотеки PyTorch (NumPy+CUDA+Autograd) из–за её простоты. Посмотрим на операции с тензорами – многомерными массивами. Подключим библиотеку и объявим два тензора: нажмём +Code, введём код в ячейку и нажмём выполнить:

import torch a = torch.FloatTensor([ [1, 2, 3], [5, 6, 7], [8, 9, 10] ]) b = torch.FloatTensor([ [–1, –2, –3], [–10, –20, –30], [–100, –200, –300] ])

Поэлементные операции, такие как "+", "–", "*", "/" над двумя матрицами одинаковых габаритов производят операции с соответствующими их элементами:

a + b tensor([ [ 0., 0., 0.], [ –5., –14., –23.], [ –92., –191., –290.] ])

Другим вариантом поэлементной операции является применение одной операции ко всем элементом по одиночке, например умножение на –1 или применение функции:

a tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ]) a * –1 tensor([ [ –1., –2., –3.], [ –5., –6., –7.], [ –8., –9., –10.] ]) a.abs() tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ])

Также имеются операции свёртки, такие как sum, min, max, которые на входе дают сумму всех элементов, самый маленький или самый большой элемент матрицы:

a.sum() tensor(51.) a.min() tensor(1.) a.max() tensor(10.)

Но нам будут больше интересны постолбцовые операции (операция будет производиться над каждым столбцом):

a.sum(0) tensor([14., 17., 20.]) a.min(0) torch.return_types.min( values=tensor([1., 2., 3.]), indices=tensor([0, 0, 0]) ) a.max(0) torch.return_types.max( values=tensor([ 8., 9., 10.]), indices=tensor([2, 2, 2]) )

Как мы помним, нейронная сеть состоит из слоёв, слои состоят из нейронов, а нейрон содержит на входе связи с весами в виде простых чисел. Вес задаётся обычным числом, тогда входящие связи в нейрон можно описать последовательностью чисел – вектором (одномерным массивом или списком), длина которого и есть количество связей. Так как сеть полносвязная, то все нейроны этого слоя связаны с предыдущим, а, следовательно, демонстрирующие их вектора имеют тоже одинаковую длину, создавая список равных по длине векторов – матрицу. Это удобное и компактное представление слоя, оптимизированное для использования на компьютере. На выходе нейрона имеется функция активации (сигмойда или, ReLU для глубоких и сверхглубоких сетей), которая определяет, выдаст на выходе нейрон значение или нет. Для этого необходимо применить её к каждому нейрону, то есть к каждому столбцу: мы уже видели операцию к столбцам.