Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - страница 62



. Выявление, выражение и понимание этих эмерджентных законов, охватывающих все формы жизни, – грандиозная задача.

Именно в этом контексте следует рассматривать законы аллометрического масштабирования: их систематическая регулярность и всеобщность позволяет получить информацию о таких эмерджентных законах и основополагающих принципах. Поскольку окружающая среда изменяется, все эти разнообразные системы должны быть масштабируемы, чтобы успешно справляться с постоянно встающими перед ними задачами адаптации, развития и роста. На самых разных пространственных и временных масштабах должны действовать одни и те же общие, фундаментальные динамические и организационные принципы. Масштабируемость живых систем лежит в основе их поразительной прочности и жизнестойкости, на уровне как отдельных организмов, так и жизни в целом.

6. Сети и происхождение степенного аллометрического масштабирования с четвертными показателями

Когда я начинал думать о том, каково может быть происхождение этих удивительных законов масштабирования, мне стало ясно, что какие бы причины их ни порождали, они должны быть независимы от сложившегося в процессе эволюции строения любого типа организмов, так как в млекопитающих, птицах, растениях, рыбах, моллюсках, клетках и так далее проявляются одни и те же законы. Существование и воспроизводство всех этих организмов, от мельчайших и простейших бактерий до крупнейших растений и животных, опирается на тесную интеграцию многочисленных подсистем – молекул, органелл и клеток – и эти микроскопические компоненты требуют сравнительно «демократического» и эффективного обслуживания для обеспечения метаболическими субстратами, удаления отходов и регулирования их работы.


Примеры биологических сетей. Против часовой стрелки, начиная с левого верхнего угла: система кровоснабжения головного мозга; сети микротрубочек и митохондрий в клетке; белое и серое вещество мозга; паразит, живущий в слонах; дерево; сердечно-сосудистая система человека


Естественный отбор решил эту задачу, вероятно, самым простым из возможных способов – путем развития разветвленных иерархических сетей, распределяющих энергию и материалы между макроскопическими резервуарами и микроскопическими площадками. Скорость, с которой энергия, метаболиты и информация могут передаваться по этим сетям, определяет абсолютное ограничение работы биологических систем. Примеры таких сетей можно увидеть в сосудистых, дыхательных, мочевыделительных и нервных системах животных, капиллярных системах растений, межклеточных сетях, а также системах, обеспечивающих поступление пищи, воды, энергии и информации в человеческих обществах. Собственного говоря, если об этом задуматься, можно понять, что под нашей гладкой кожей каждый из нас, по сути дела, представляет собой интегрированный набор таких сетей, каждая из которых обеспечивает передачу метаболической энергии, материалов и информации на всех масштабных уровнях. Некоторые из таких сетей проиллюстрированы на с. 123.

Раз жизнь поддерживается на всех масштабных уровнях такими иерархическими сетями, естественно предположить, что ключ к степенным аллометрическим законам масштабирования с четвертными показателями и, следовательно, к общему определению поведения биологических систем следует искать именно в общих физических и математических свойствах этих сетей. Другими словами, несмотря на огромное разнообразие их структур, возникших в процессе эволюции, – некоторые из них состоят из трубок подобно водопроводной сети наших домов, другие образованы пучками волокон подобно электрическим проводам, а некоторые просто представляют собой диффузионные каналы, – предполагается, что все они подчиняются одним и тем же физическим и математическим принципам.