, как показано на рисунке.Далее хотелось бы найти , но для этого нужно отметить на горизонтальной оси. Самый простой способ сделать это – двигаться горизонтально от точки до диагональной линии. Когда достигнем диагональной линии, окажемся в , так как сохранили ту же вторую координату, но изменили первую координату. Теперь, чтобы найти , просто двигаемся вертикально назад к параболе, чтобы найти точку . Теперь это просто вопрос повторения этих шагов навсегда: двигаться вертикально к параболе, затем горизонтально к диагональной линии, затем вертикально к параболе, затем горизонтально к диагональной линии и так далее.
Рисунок 1.3. Паутинная диаграмма нелинейной модели.
Судя по графику ясно, что если начальная популяция лежит в диапазоне от 0 до , то модель с и приведёт к постоянно растущему значению популяции, которое приближается к предельному значению пропускной способности равному 10.
Если оставить те же значения
и , но положить , то паутина будет выглядеть так, как показано на рисунке 1.4.
Рисунок 1.4. Паутинная диаграмма нелинейной модели.
Действительно, становится ясным, что если имеет значение больше, чем , то наблюдается немедленное падение численности популяции. Если такое падение окажется ниже критического, то произойдёт постепенное увеличение, приближающееся обратно к предельному значению пропускной способности модели.
Вопросы для самопроверки:
– Для модели

найдите отличное от нуля значение , соответствующее абсциссе точки пересечения параболы с горизонтальной осью, то есть имеющей ординату .– Что произойдет, если выбрать больше, чем значение, найденное в предыдущем вопросе?
Если популяция становится отрицательной, то мы должны интерпретировать это как вымирание.
На этом этапе можно узнать гораздо больше, изучая логистическую модель с помощью калькулятора или компьютера, чем просто прочитав текст. Упражнения ниже помогут в этом. На самом деле обнаружится, что логистическая модель имеет некоторые сюрпризы, которые вы, возможно, не ожидаете.
Задачи для самостоятельного решения:
1.2.1. Пусть
и . С помощью калькулятора составьте таблицу популяционных значений для . Изобразите полученные результаты на графике.1.2.2. В модели
, какие значения приведут к тому, что окажется положительным? Отрицательным? Какой смысл это имеет?1.2.3. Повторите решение задачи 1 в MATLAB с помощью команд аналогичных следующим:
p=1; x=p
for i=1:22; p=p+.3*p*(1-p/15); x=[x p]; end
plot([0:22], x)
Объясните, как это работает.
1.2.4. Используя следующую программу onepop.m для MATLAB при различных значениях
, исследуйте долгосрочное поведение модели , где . Возможно, придется изменить количество шагов, с которыми вы запускаете модель, чтобы изучить некоторые из вариантов.% onepop.m
%
% Модель популяции одного вида
%
% У пользователя запрашивается уравнение, определяющее модель. Затем, кликнув
% по начальной численности популяции на графике, динамика популяции как функция
% от времени будет изображена в виде графика. После выполнения симуляции