Математические модели в естественнонаучном образовании. Том I - страница 3
Начнём разбирать перечисленные вопросы с помощью самой простой математической модели изменяющейся численности населения.
1.1. Мальтузианская модель
Предположим, мы выращиваем не будущих математиков, а популяцию какого-то организма, скажем, мух, в лаборатории. Представляется разумным, что в любой данный день численность населения будет меняться из-за новых рождений, так что оно увеличивается за счет добавления определенной доли f от имеющегося населения. При этом часть d от имеющегося населения погибнет, условно, как бы цинично это не звучало, но многие профессиональные математики после выпуска вынуждены работать не по специальности, что смерти подобно.
Рассмотрим простейшую прикладную модель, которую предложил Томас Мальтус в своём очерке 1798 года о принципе народонаселения, неоднократно подвергавшемся всесторонней критике. Если люди живут в течение 70 лет, то мы ожидаем, что из большой популяции примерно 1/70 населения будет умирать каждый год; таким образом,
Вопросы для самопроверки:
– Объясните, почему для любой популяции
– Объясните, почему
– Используя годы в качестве единицы времени, какие значения f и d будут уместны для моделирования числа выпускников естественно-научного профиля? Гуманитарного? Социально-экономического? Технологического и универсального?
Чтобы смоделировать значения P сфокусируемся на следующем за P изменении численности. Формально
Введём несколько вспомогательных обозначений для упрощения восприятия математической модели. Пусть
Ясно, что
Теперь то, что нас в конечном итоге волнует, это понимание динамики популяции
Популяризаторы науки часто называют константу
Таблица 1.1. Рост популяции по простой модели
Момент времени Численность
0 500