Мир-фильтр. Как алгоритмы уплощают культуру - страница 10



использует данные о ваших прошлых действиях, чтобы рекомендовать те песни, которые лучше всего подходят вашей душевной организации. Однако технология, которая все это обеспечивает, не похожа на проект “Киберсин”. У нее нет шестиугольных комнат и кресел с подлокотниками. Алгоритмы стали одновременно невидимыми и вездесущими, они содержатся в приложениях, которые мы носим с собой на телефонах, хотя их данные физически хранятся где-то далеко, на огромных серверных фермах с градирнями, расположенных в малозаметных местах на природе. Если в проекте “Киберсин” предполагалось, что мир, управляемый данными, может быть последовательным и понятным и его можно заключить в рамки помещения диспетчерского центра, то теперь мы знаем, что он абстрактный и диффузный, он везде и нигде одновременно. Нас побуждают забыть о наличии алгоритмов.

Новые технологии неизбежно порождают новые формы поведения, но это поведение редко совпадает с тем, которого ожидают изобретатели. Технология обладает собственным смыслом, который в конечном итоге выходит на первый план. Маршалл Маклюэн написал знаменитый афоризм “Средство коммуникации есть сообщение”[13] в своей книге 1964 года “Понимание медиа: внешние расширения человека”. Он имел в виду, что структура нового средства передачи информации – электрического света, телефона, телевидения – важнее содержания, которое через него передается. Сама способность телефона соединять людей превосходит любой конкретный разговор. Маклюэн писал: “Ибо «сообщением» любого средства коммуникации, или технологии, является то изменение масштаба, скорости или формы, которое привносится им в человеческие дела”. В нашем случае средством передачи является алгоритмическая лента; она масштабирует и ускоряет взаимосвязь людей по всему миру до невообразимой степени. Смысл ее функции заключается в том, что на каком-то уровне наши коллективные потребительские привычки, переведенные в данные, приводят к одинаковости.

Как работают рекомендательные алгоритмы

Алгоритмы – это цифровые машины, которые, подобно конвейеру на фабрике, превращают серию входных данных в определенный результат на выходе. Отличие одного алгоритма от другого заключается не столько в структуре, сколько в компонентах, из которых они строятся. Все рекомендательные алгоритмы работают, собирая набор исходных данных. Общий термин для этого набора данных – “сигнал”, собранные входные данные, которые поступают в машину. Этот сигнал может включать в себя сведения о прошлых покупках пользователя на Amazon или о том, сколько других пользователей отдали предпочтение определенной песне на Spotify. Подобные сведения имеют не качественную, а количественную форму, поскольку их должна обрабатывать машина. Поэтому даже если эти данные относятся к такой субъективной теме, как музыкальные предпочтения, они выражаются цифрами: х пользователей поставили группе y среднюю оценку z, или х пользователей прослушали треки группы y z раз. Основным сигналом для многих рекомендаций в социальных сетях является проявление интереса, или вовлеченность, которая описывает, каким образом пользователи взаимодействуют с контентом. Это может выражаться в лайках, ретвитах или просмотрах – всевозможные кнопки, расположенные рядом с постом. Высокая вовлеченность означает, что количество лайков, просмотров или перепостов у данного сообщения выше, чем у других.