mixOmics для гуманитариев - страница 3



Сохраним числовые данные из исходной таблицы во вспомогательной переменной:

to.remove <– c('Фимилия Имя', 'Класс', '№№')

X <– My_table[, !colnames(My_table) %in% to.remove]

Следуя примеру выше, методы PCA могут быть применены для выбора первых пяти переменных, тесно связанных с первыми двумя компонентами в PCA. Пользователь определяет количество переменных, выбранных по каждому компоненту, например, здесь выберем пять переменных на каждом из первых двух компонентов командой keepX=c(5,5):

My_result.spca <– spca(X, keepX=c(5,5)) # 1 Запуск выбранного метода анализа

plotIndiv(My_result.spca) # 2 Визуальное представление образцов

plotVar(My_result.spca) # 3 Визуальное представление переменных



Можно заметить, что сократилось количество элементов на круге корреляции. Не останавливайтесь на достигнутом, находясь в начале большого пути. Можно улучшить наглядность представляемых результатов анализа следующим образом: загляните в справочное руководство по каждой из функций используемой в примерах, введя в консоли ?pca,  ?plotIndiv,  ?sPCA. Для запуска сопутствующих примеров можно использовать функцию example:  example(pca), example(plotIndiv), и другие.

Глава 2. Метод главных компонент (PCA)

Зададимся следующим вопросом: как определить основные источники различий в имеющихся данных, а после этого выяснить, соответствуют ли такие источники объективным условиям педагогического эксперимента или они образовались в результате предвзятости экспериментаторов? Попутно хотелось бы визуализировать основные тенденции и закономерности изменения значений между образцами, в частности, естественного характера, в соответствии с известными условиями педагогического наблюдения.

Так, например, исходные данные для анализа могут содержать таблицу с n рядами и p столбцами, соответствующими уровню успеваемости p студентов, измеренных на n курсах. Чтобы проиллюстрировать PCA, фокусируемся на уровнях успеваемости по темам, описанным в таблице данных My_table, сохранённой ранее.

Цель PCA заключается в том, чтобы уменьшить размерность данных, сохраняя при этом как можно больше информации, насколько это возможно. «Информация» здесь обусловлена дисперсией. Идея заключается в создании попарно несвязанных между собой вспомогательных переменных, называемых главными компонентами (PC), которые являются линейной комбинацией исходных (возможно, коррелирующих между собой) переменных (например, тематика контрольных работ и так далее).

Уменьшение размерности достигается за счет отображения исходных данных в пространство, порождаемое главными компонентами (PC). На практике это означает, что каждому образцу присваивается координата по каждому новому измерению PC – эта координата рассчитывается как линейная комбинация исходных переменных, с некоторыми весовыми коэффициентами. Вес каждой из исходных переменных хранится в так называемых векторах нагрузки, связанных с каждым образцом. Размер данных уменьшается за счет проецирования данных в подпространство меньшей размерности, порождаемое PC, при одновременном охвате крупнейших источников различий между образцами.

Главные компоненты получены таким образом, чтобы их дисперсия была максимальной. С этой целью вычисляются собственные векторы и собственные значения матрицы дисперсии-ковариации, часто с помощью алгоритмов линейного разложения значения, когда количество переменных достаточно велико. Данные, как правило, центруют (опцией center = TRUE), а иногда и масштабируют (scale = TRUE) при вызове метода. Масштабирование рекомендуется применять в том случае, если дисперсия неоднородна по переменным.