Моделирование синергетических систем. Метод пропорций и другие математические методы. Монография - страница 4



>1,2 – комплексные:


где 

(8)

Как видим, k>1,2 соответствуют 4-му типу решения ОЛУ (см. Приложение, раздел П1.3). В этом случае решением уравнения (7) является выражение

y* = е>– ηt (A>1 cos δt + A>2 sin δt), (9)

где A>1 и A>2 − константы интегрирования.

Частное решение y>1 определим по виду правой части уравнения, в качестве которой в (5) выступает a/α. Последнее соответствует первому виду правой части НОЛУ (см. Приложение, раздел П1.4), а именно

f (t) = p (t) e >γt. (10)

Действительно, для уравнения (5) функцию f (t) можно записать как

(11)

Сравнивая между собой (10) и (11), находим, что в нашей задаче

(12)

Напомним, что число, возведенное в степень, равно единице только в том случае, если степень равна нулю. Следовательно, γ = 0. Как видим, γ не совпадает с корнями характеристического уравнения k>1,2. Поэтому для y>1 выбираем первый тип решения (выбираем пункт 1.а из раздела П1.4 Приложения):

y>1 = q(t) et = q(t)

(e>γt = 1, см. (12)). Определим вид q (t). Для этого учтем, что: а) q (t) – многочлен той же степени, что и р (t); б) в нашем случае р (t) – многочлен нулевой степени:


Следовательно, и q(t) является многочленом нулевой степени, т. е. является постоянной величиной. Обозначим эту постоянную, например, с: q(t) = c. Тогда

y>1 = q(t) = c. (13)

Постоянную с найдем, подставив y>1 в (5):


Воспользуемся (13):


Здесь мы учли, что


Найденное значение с подставим в (13):


– частное решение уравнения (5). Его общее решение запишем по формуле (6) (y* возьмем из (9)):

(14)

Выражение в скобках можно упростить, заменив постоянные A>1 и A>2 на новые постоянные A и φ>0 по формулам

A>1 = A sin φ>0 и A>2 = A cos φ>0

(легко увидеть, что 

). Тогда

A>1 cos δt + A>2 sin δt = A (sin φ>0 cos δt + cos φ>0 sin δt) = A sin (δt + φ>0).

В результате (14) примет вид

(15)

Уравнение (15) представляет собой формулу зависимости от времени количества товара, приобретаемого благодаря действию рекламы.

Из (15) следует, что если рекламировать товар с постоянной интенсивностью достаточно долго (a = const), то начнутся колебания y вокруг постоянного значения a/γ, т. е. возникнет чередование периодов положительного и отрицательного восприятия рекламы (см. рис. 1).

Сравним (15) с известным законом колебательного движения

x = A sin (ωt + φ>0).

Как видим, δ совпадает по смыслу с циклической частотой ω. Отсюда, воспользовавшись соотношением для периода колебаний T = 2π/ω, получаем формулу для промежутка времени положительного восприятия рекламы:


где δ вычисляется из (8). Для определения численных значений коэффициентов, входящих в (8), возможно использование эконометрических методов.


Рис. 1. Чередование периодов положительного и отрицательного восприятия рекламы

Глава 2

Приложение дифференциального исчисления для анализа устойчивости систем

К настоящему времени в экономике системные закономерности наиболее подробно рассмотрены в математических моделях экономического роста крупных регионов, например городов, областей, государств (см., например, [7,14]). При этом в качестве переменных величин, как правило, выбирались национальный доход, капитал, средний уровень зарплаты, цены и т. п. Модели таких систем характеризуют результаты согласованного поведения большого количества фирм, входящих в регион. В данной главе будет проведен анализ поведения отдельной фирмы, для которой экономика региона играет роль внешней среды.

Мы рассмотрим фирму, обладающую следующими средними (по региону) показателями: числом сотрудников и величиной оборотного капитала. Главная задача данного раздела – раскрыть важную роль управляющих параметров, которую они играют при выборе системой пути к тому или иному устойчивому состоянию.