Несостоявшаяся информационная революция. Условия и тенденции развития в СССР электронной промышленности и средств массовой коммуникации. Часть I. 1940–1960-е годы - страница 16
Появление планарной технологии вызвало качественный сдвиг в полупроводниковой электронике. Возможность точного проектирования геометрических конфигураций p – n-переходов, их взаимного расположения, а также защита мест выхода p – n-переходов на поверхность от внешних влияний – вот, те основные черты, которые обеспечили планарной технологии блестящее будущее.
Уникальные свойства кремния для литографии и выращивания изоляционных слоев предопределили судьбу германия, который постепенно вышел из состава сырьевой базы промышленной электроники.
Технологическая цепочка по производству полупроводникового кремния состоит из следующих звеньев: 1) добыча кварцевого песка; 2) получение поликристаллического (металлургического) кремния; 3) выращивание монокристаллов; 4) получение пластин необходимого диаметра и физических свойств, – и требует сложного и дорогостоящего оборудования.
Более 80 % кристаллов кремния получают методом Чохральского, названным в честь польского химика начала XX века. Однажды он нечаянно уронил в тигель с расплавленным оловом металлическое перышко. Медленно вытаскивая его, чтобы не обжечься, ученый заметил, что перо тянет за собой нитку застывающего олова. Оказалось, что она представляет собой монокристалл. Почти полвека никто не вспоминал о Яне Чохральском (1885 – 1953). Наконец в 1950 г. в США его методом, впервые, были успешно выращены монокристаллы германия, а затем кремния.
Если донорские и акцепторные примеси, введенные в расплав кремния, таковы, что одни из них больше «предпочитают» твердую фазу, чем другие, то при вытягивании кристалла с чередованием ускорения и замедления можно создавать чередующиеся слои n- и p-типа, и в одном слитке получать множество транзисторных слоев с заданной топологией.
Транзисторы постепенно обосновывались в радиоприемниках и телевизорах, в приборах промышленной автоматики и вычислительной техники. Однако производители вакуумной электроники сдаваться без боя не собирались. В 1959 г. RCA выпустила первую серию нувисторов – сверхминиатюрных и надежных металлокерамических приемно-усилительных радиоламп. «Великий перелом» наступил в 1961 г., когда объём производства полупроводниковых приборов в США превысил объём производства радиоламп: было изготовлено 190 млн. шт. транзисторов и 260 млн. шт. точечных диодов, по сравнению с 360 млн. шт. радиоламп.
Благодаря транзисторам удалось увеличить плотность расположения компонентов радиоэлектронной аппаратуры, сделать ее более компактной и менее энергозатратной, ускорить и усовершенствовать процессы ее сборки. В производстве радиоэлектронной аппаратуры стали широко применяться многослойные печатные платы (англ. printing plate), в которых все одиночные проводники объединены в единое целое и изготавливаются одновременно групповым методом путем стравливания медной фольги с поверхности фольгированного диэлектрика. Основные элементы печатной платы – основание (подложка) и проводники. Данные элементы необходимы и достаточны для того, чтобы печатная плата была печатной платой. Круг второстепенных элементов несколько шире: контактные площадки, переходные металлизируемые и монтажные отверстия, ламели для контактирования с разъемами, участки для осуществления теплоотвода и т. д.
В СССР разработка технологии печатных плат началось в первой половине 1950-х. Этим занимался горьковский Центральный научно-исследовательский институт технологии и организации производства (ЦНИИТОП). Первые образцы радиоэлектронной аппаратуры с применением печатных плат были изготовлены в 1953-1954 гг. на Воронежском радиозаводе (радиоприемник «Дорожный») и на Кунцевском электромеханическом заводе (телевизор «Старт»). Процесс изготовления первых отечественных печатных плат весьма оригинален. Основанием плат служили пластины, прессованные из карболита. Прессование производилось таким образом, что в пластинах образовывались канавки, после металлизации которых они служили проводниками.