?Неуязвимость! Отчего системы дают сбой и как с этим бороться - страница 10



по тропе вниз, полагаясь только на эпизодически возникающие и нечеткие картины. Именно это мы и делаем, когда пытаемся управлять сложной системой.

Перроу быстро понял, что различие между линейной и сложной системами заключается не в их продвинутости. Сборочный конвейер на автозаводе точно не назовешь простым, и тем не менее его части взаимодействуют друг с другом преимущественно линейным и понятным образом. Или возьмите плотины. Они представляют собой вершину инженерного искусства, но не являются сложными.

В случае со сложными системами мы не можем забраться внутрь, чтобы посмотреть, что творится «в животе у чудовища». В оценке большинства ситуаций мы вынуждены опираться на непрямые показатели. Например, на АЭС мы не можем послать кого-то посмотреть, что происходит в активной зоне действующего реактора. Мы должны собирать воедино всю картину по маленьким кусочкам – показаниям датчиков давления, замерам расхода воды и т. п. Мы видим кое-что, но не все. Поэтому наш диагноз легко может стать ошибочным.

И вот когда мы имеем дело со сложными взаимодействиями внутри системы, небольшие изменения в ней могут произвести огромный эффект. На АЭС Three Mile Island чашка нерадиоактивной воды вызвала потерю тысяч литров радиоактивной охлаждающей жидкости. Это «эффект бабочки» из теории хаоса: концепция, согласно которой взмах крыльев бабочки в Бразилии может создать условия для торнадо в Техасе{33}. Пионеры теории хаоса понимали, что всех наших моделей и измерений никогда не будет достаточно для предсказания последствия «эффекта бабочки». Перроу утверждал нечто подобное: мы просто не можем в достаточной степени понять комплексные системы, чтобы предсказать все возможные последствия даже небольшого сбоя.

IV

Второй фактор теории катастроф Чарльза Перроу касается вопроса о том, сколько «люфта» позволяет данная система, насколько она (если использовать техническую терминологию) жестко связана. Когда части системы связаны жестко, между ними мало «люфта», или зазора. Сбой в одной части легко воздействует на другие. Отсутствие жесткого соединения означает обратное: между частями системы большой зазор, поэтому, когда один компонент выходит из строя, вся система при этом выживет.

В жестко связанных системах недостаточно преимущественно все делать правильно. Количество входящих импульсов должно быть точным, и они должны быть особым образом соединены по порядку и во времени. Повторное выполнение задачи в том случае, если не вышло с первого раза, обычно невозможно. Замены и альтернативные методы срабатывают редко – есть только один правильный порядок действий. Все происходит очень быстро, и мы не можем просто выключить систему, решая возникшую в ней проблему.

Возьмите атомные электростанции. Управление ядерной реакцией требует создания ряда специфических условий, где даже небольшое отклонение от нормального процесса (типа заклинившего клапана компенсатора давления) может создать большие проблемы. А когда такие проблемы возникают, мы не можем просто выключить систему или «поставить ее на паузу». Цепная реакция протекает со свойственной ей скоростью, и даже если мы остановим ее, то в реакторе сохранится много остаточного тепла. Тут важен правильный выбор момента. Если реактор перегревается, то бесполезно увеличивать уровень охлаждающей жидкости в нем через несколько часов – это нужно делать сразу. А проблемы быстро нарастают по мере расплавления твэлов и утечки радиации.