Нейросети. Обработка естественного языка - страница 17



Подготовка последовательностей:

– Токенизированные тексты преобразуются в последовательности фиксированной длины. Это важно для того, чтобы иметь одинаковую длину входных данных для обучения модели.

Создание CNN модели:

– Далее создается модель сверточной нейронной сети (CNN). Модель состоит из нескольких слоев, включая сверточные слои и пулинг слои. Сверточные слои используются для извлечения признаков из текста, а пулинг слои уменьшают размерность данных.

– После сверточных слоев добавляются полносвязные слои для классификации текста по категориям.

Компиляция модели:

– Модель компилируется с оптимизатором, функцией потерь и метриками. Функция потерь обычно является категориальной кросс-энтропией для многоклассовой классификации, а метрикой может быть точность (accuracy).

Обучение модели:

– Модель обучается на обучающем наборе данных в течение нескольких эпох. В процессе обучения модель корректирует свои веса и настраивается для лучшей классификации текста.

Оценка и тестирование:

– После обучения модель оценивается на тестовом наборе данных для оценки ее производительности. Метрики, такие как точность, полнота и F1-мера, могут использоваться для измерения качества классификации.

Применение модели:

– После успешного обучения модель можно использовать для классификации новых текстовых документов на категории.

Пример кода на Python с использованием библиотек TensorFlow и Keras для классификации текста с использованием CNN:

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score

# Подготовка размеченных данных (пример данных)

texts = ["Политика: новости о выборах", "Спорт: результаты чемпионата", "Экономика: рост ВВП", "Наука: новое исследование"]

labels = ["Политика", "Спорт", "Экономика", "Наука"]

# Преобразование меток в числа

label_encoder = LabelEncoder()

y = label_encoder.fit_transform(labels)

# Токенизация и векторизация текстов

tokenizer = Tokenizer()

tokenizer.fit_on_texts(texts)

word_index = tokenizer.word_index

sequences = tokenizer.texts_to_sequences(texts)

# Подготовка последовательностей и паддинг

max_sequence_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_sequence_length)

# Разделение на обучающий и тестовый наборы

x_train, x_test, y_train, y_test = train_test_split(padded_sequences, y, test_size=0.2, random_state=42)

# Создание CNN модели

model = Sequential()

model.add(Embedding(input_dim=len(word_index) + 1, output_dim=100, input_length=max_sequence_length))

model.add(Conv1D(128, 3, activation="relu")) # Изменено количество фильтров и размер свертки

model.add(GlobalMaxPooling1D())

model.add(Dense(len(set(y)), activation="softmax"))

# Компиляция модели

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

# Обучение модели

model.fit(x_train, y_train, epochs=10, validation_split=0.2)

# Оценка модели

y_pred = model.predict(x_test)

y_pred = tf.argmax(y_pred, axis=1).numpy()

accuracy = accuracy_score(y_test, y_pred)

print(f"Точность: {accuracy:.4f}")