Нейросети. Обработка естественного языка - страница 19



– Извлечение признаков из текста:


Сверточные нейронные сети (Convolutional Neural Networks, CNN) изначально разрабатывались для обработки изображений, но они также могут быть эффективно применены для анализа текста. Одной из ключевых особенностей CNN является их способность автоматически извлекать значимые признаки из данных, что делает их полезными инструментами для анализа текстов.

Рассмотрим как работают сверточные слои в анализе текста:

1. Сверточные фильтры: Сверточные слои используют фильтры (ядра), которые скользят (конволюцируются) по входным данным. В случае текста, фильтры скользят по последовательности слов (токенов). Фильтры представляют собой матрицы весов, которые определяют, какие признаки они будут извлекать. Фильтры могут быть разных размеров и выполнять разные операции.

2. Извлечение признаков: При скольжении фильтров по тексту они извлекают локальные признаки. Например, один фильтр может выделять биграммы (пары слов), а другой – триграммы (три слова подряд). Фильтры "апроксимируют" части текста, выявляя важные структуры, такие как фразы, ключевые слова или грамматические конструкции.

3. Свертка и пулинг: После применения фильтров, результаты свертки подвергаются операции пулинга (pooling). Пулинг уменьшает размерность данных, оставляя только наиболее важные признаки. Операция Max-Pooling, например, выбирает максимальное значение из группы значений, что позволяет выделить самые значимые признаки.

4. Слои полносвязной нейронной сети: После извлечения признаков из текста через сверточные слои, результаты передаются на полносвязные слои нейронной сети. Эти слои выполняют классификацию, регрессию или другие задачи в зависимости от поставленной задачи. Для анализа текста это может быть задачей классификации текстов на категории или определения тональности.

Пример кода для анализа текста с использованием сверточных слоев на Python и библиотеке TensorFlow/Keras:

import tensorflow as tf

from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense

from tensorflow.keras.models import Sequential

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

# Генерируем синтетический датасет для примера

texts = ["Этот фильм был ужасным!", "Отличный фильм, рекомендую.", "Сюжет оставляет желать лучшего."]

# Метки классов (положительный, отрицательный)

labels = [0, 1, 0]

# Токенизация и векторизация текстов

tokenizer = Tokenizer(num_words=1000)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

# Подготовка данных для модели

max_sequence_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_sequence_length)

# Создание модели CNN для анализа текста

model = Sequential()

model.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=100, input_length=max_sequence_length))

model.add(Conv1D(32, 3, activation='relu')) # Изменено ядро с 5 на 3 и количество фильтров с 128 на 32

model.add(GlobalMaxPooling1D())

model.add(Dense(1, activation='sigmoid'))

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Обучение модели

x_train = padded_sequences

y_train = np.array(labels)

model.fit(x_train, y_train, epochs=10)

# Оценка модели

test_text = ["Это лучший фильм, который я когда-либо видел!"]