Нейросети. Обработка естественного языка - страница 23



Архитектура Transformer и её модификации (например, BERT и GPT) стали основой для многих современных задач в NLP, включая машинный перевод, обработку текста, анализ тональности, вопросно-ответные системы и многое другое. Эти модели показали выдающуюся производительность благодаря своей способности к обучению на больших объёмах данных и обобщению на различные задачи.

BERT (Bidirectional Encoder Representations from Transformers) и GPT (Generative Pre-trained Transformer) – это две мощные модели для работы с естественным языком (Natural Language Processing, NLP). Они используют архитектуры Transformer для различных задач NLP, но они имеют разные цели и способы использования. Давайте рассмотрим каждую из них с подробным описанием и примерами использования.


BERT (Bidirectional Encoder Representations from Transformers)

Описание: BERT – это модель, разработанная Google AI, и она представляет собой архитектуру Transformer, обученную на огромном корпусе текста. Особенность BERT заключается в том, что она способна понимать контекст и семантику текста, учитывая оба направления (слева направо и справа налево) при обработке текста. Это делает BERT очень мощной для различных задач NLP.

Примеры использования:

1. Классификация текста: BERT может использоваться для задач классификации текста, таких как определение тональности (положительный/отрицательный отзыв), определение языка, категоризация текста и т. д.

Пример кода на Python с использованием библиотеки Transformers от Hugging Face:

```python

from transformers import BertTokenizer, BertForSequenceClassification

Если вам понравилась книга, поддержите автора, купив полную версию по ссылке ниже.

Продолжить чтение