Нейросети: создание и оптимизация будущего - страница 5



Временные ряды также могут быть представлены в виде матриц, где строки могут соответствовать временным меткам, а столбцы – различным параметрам или характеристикам данных. Например, временные данные о погоде могут быть организованы как матрица, где каждая строка представляет определённый день или час, а каждый столбец – температуру, влажность и другие параметры. Матрицы позволяют сохранить связи и последовательность между данными, что помогает нейронной сети понимать их взаимосвязи и лучше справляться с задачами прогнозирования.

Преобразование данных для нейронной сети

Перед подачей в нейронную сеть данные обычно проходят предварительную обработку, включающую преобразование в числовой формат, нормализацию и масштабирование. Нормализация, например, может быть полезной, чтобы значения входных данных находились в одном диапазоне, что помогает модели обучаться быстрее и избегать проблем, связанных с сильно различающимися масштабами характеристик. После нормализации данные превращаются в векторы или матрицы, подходящие для обработки в сети, где каждый элемент легко интерпретируется узлами сети. Эти преобразования делают данные совместимыми с архитектурой ИНС, которая затем может анализировать их на каждом слое, выявляя закономерности и закономерности.

Таким образом, преобразование данных в числовые векторы и матрицы является критически важным шагом, который делает информацию доступной для ИНС, позволяя ей эффективно работать с разнообразными типами входных данных, будь то изображения, текст или временные ряды.

Когда вектор или матрица поступает в сеть, каждый элемент умножается на веса и проходит через функцию активации. Эти операции продолжаются через слои сети, пока модель не выведет результат на выходе.


1.3. Принципы работы нейронных сетей

Нейронные сети – это алгоритмы, которые пытаются имитировать процесс принятия решений в мозге, обрабатывая данные, используя ряд искусственных «нейронов». Каждый нейрон выполняет простые операции, но при объединении в многослойную структуру сеть может решать сложные задачи. Основной принцип нейронной сети – это прохождение данных через сеть нейронов, которые организованы в слои (входной, скрытые и выходной). На каждом этапе информация преобразуется, и сеть обучается корректировать свои внутренние параметры, чтобы уменьшить ошибки на выходе.


Функции активации: сигмоид, ReLU, tanh и их особенности

– Сигмоидная функция: Сигмоидная функция активации сжимает входные значения в диапазон от 0 до 1, что удобно для задач, где требуется вероятностная интерпретация результата (например, бинарная классификация). Она имеет плавный S-образный вид. Однако, когда значения на входе очень большие или маленькие, сигмоид сильно сглаживает значения, делая градиент почти равным нулю. Это приводит к проблеме затухающих градиентов, что замедляет обучение.

– ReLU (Rectified Linear Unit): ReLU активируется только при положительных входных значениях, а при отрицательных обнуляется. Она значительно ускоряет обучение по сравнению с сигмоидом и помогает преодолеть проблему затухающих градиентов. Однако ReLU имеет свою проблему: если значение на входе слишком велико или слишком мало, нейрон может «вылететь» в область, где он всегда отдает ноль, так называемая проблема «умирающих нейронов».

– tanh (гиперболический тангенс): tanh работает похоже на сигмоид, но сжимает значения в диапазон от -1 до 1. Это помогает справляться с отрицательными входами, что полезно для задач, где такие значения играют важную роль. Tanh также подвержена затуханию градиентов, но меньше, чем сигмоид. Он помогает в задачах, где важно учитывать знаки выходных данных, так как диапазон шире, чем у сигмоида.