Обыграй дилера: Победная стратегия игры в блэкджек - страница 16
После этого разыграйте еще 400 раздач, следуя правильной стратегии прикупа и остановки против туза (по таблице 3.5). Разность выигрышей и проигрышей дает суммарный выигрыш по 400 раздачам. Превышение выигрышей над проигрышами за 400 раздач при таком использовании прикупа и остановки составляет в среднем 17,2 раздачи. Удвоение ставки в среднем дает превышение выигрышей над проигрышами, равное 5,0 раздачам.
В соответствии с таблицей 4е преимущество от разделения пары по сравнению с остановкой составляет в этом случае 17,2 + 10,2, то есть 27,4 %. Если игрок не останавливается, он получает на 100 раздачах суммарный проигрыш 10,2 единицы. Если он разделяет пару, 100 ставок превращаются в 200, и из этих 200 раздач игрок выигрывает приблизительно на 17,2 раздачи больше, чем проигрывает. Разделяя пару, а не останавливаясь, игрок получает на 100 исходных раздач среднее суммарное преимущество 27,4 единицы. Пятьдесят исходных раздач каждого типа должны быть достаточно показательны.
Как сказано в работе Болдуина и др. [2, с. 439], «ожидаемый результат игрока, который имитирует поведение дилера, прикупает к 16 или меньшей сумме, останавливается при 17 или больше, никогда не удваивает ставок и не разделяет пар, составляет −0,056». Другими словами, дилер имеет перед ним преимущество 5,6 %.
Проиллюстрируем применение таблицы 1 на примере вычисления результата для игрока, имитирующего поведение дилера. Прежде всего заметим, что, если игрок следует этим правилам, игра становится симметричной, за исключением двух ситуаций. Если и игрок, и дилер перебирают, то дилер выигрывает. Будем считать, что у дилера перебор, если он перебрал бы при дальнейшем розыгрыше несмотря на то, что игрок также перебрал и уже потерял свою ставку. Это правило выгодно дилеру. Преимущество, которое оно дает ему, равно вероятности одновременного перебора у игрока и у дилера. Поскольку предполагается, что игрок и дилер используют одну и ту же стратегию, данные таблицы 1 («Вероятности комбинаций дилера») относятся к ним обоим. Тогда полная вероятность перебора у каждого из них равна 0,2836, а вероятность одновременного перебора обоих (в предположении стохастической независимости, которое, строго говоря, неверно, но дает в данном случае достаточно хорошее приближение при почти полной колоде) составляет 0,2836 · 0,2836, то есть связанное с этим фактором преимущество дилера составляет 8,04 %. Второе нарушение симметрии такой игры связано с тем, что если игроку, но не дилеру приходит натуральный блэкджек, игрок выигрывает 1,5 единицы. И в то же время, если натуральный блэкджек приходит дилеру, но не приходит игроку, дилер выигрывает одну единицу. Такое происходит в 4,68 % случаев для каждой из сторон, так что преимущество игрока, связанное с этим фактором, составляет половину этой величины, то есть 2,34 %. Итого, суммарное преимущество дилера равно (8,04 – 2,34) = 5,7 %.
Также интересно вычислить величину преимущества, которое казино имеет перед игроком, никогда не прикупающим к руке, на которой возможен перебор. Отметим прежде всего, что это означает, что для такого игрока все жесткие суммы остановки равны 12. Однако мягкие суммы остановки не определены. В таком случае поставленная задача не имеет смысла. Поскольку в такой формулировке задача бессмысленна, мы будем исходить из предположения, что мягкие суммы остановки равны 17. Как уже было указано выше, мягкая сумма остановки не может быть меньше 17 просто исходя из соображений здравого смысла. Поскольку, как мы знаем, 18 иметь выгоднее, чем 17, мягкая сумма остановки, равная 17, дает игроку большую среднюю долю проигрышей, чем мягкая сумма остановки, равная 18. Мы будем называть игрока, использующего такую любопытную стратегию, «осторожным» или «консервативным».