Опубликованное в 90-х—10-х. Методика, математика, система образования - страница 3
Воспитание чувств
Урок математики
Дети в шестом (и в седьмом часто) классе, как и наши предки, например, в Древнем Египте, не понимают, зачем нужны математические доказательства. Аргументы их, правда, отличаются от египетских. Наши говорят: «И так ясно» или «Ведь измерить можно», а те – «Ибо так говорят жрецы!» (Вариант: «Боги!»). И действительно, жрец существует не для того, чтобы доказывать: на то и вера. В нашем случае ситуация поворачивается так: «Отец существует не для того, чтобы доказывать, на то и ремень» и «Учитель сказал – значит верно».
Как раз в шестом-седьмом проходит рубеж, когда ребёнок перестаёт верить на слово. Впрочем – у всех по-разному. Я, например, прекрасно помню, как склонившись над постелькой трёхлетнего шалуна Ника, пугал его волком, и как он сказал: «Никакого волка нет!» Пришлось вести в зоопарк и, когда мы пришли туда, помню своё маленькое торжество, когда сказал, подводя сынишку к клетке с волком: «А это кто?» Правда, потом получил сдачи под Новый Год: «Деда Мороза нет. Да. Предположим. А кто же тогда окна по ночам разрисовывает, по-вашему?»
Но давайте разберём вышеприведенные аргументы серьёзно.
«И так ясно». Ничего не ясно! Очевидное очень часто бывает неверным. Существует масса зрительных иллюзий, и, наверно, очень полезно на уроке математики ознакомить ребят с лучшими. Чтобы не зазнавались!
«Но ведь можно измерить!» Нет. Измерить можно далеко не всегда. А если и можно, то не во всех вариантах утверждения, так как их – бесконечность. Кроме того, любой измерительный прибор имеет цену деления, точность измерения. Измерьте, к примеру, сумму внутренних углов треугольника: разница теоретически может доходить до 6 градусов, и чаще всего вы получите 178>о или 183>о. Утверждение, что эта сумма равна 180>0 так доказать просто невозможно, скорее из всех этих измерений следует, что она НЕ РАВНА 180>о. Что неверно.
Вопреки возможным протестам учителя физики, скажу: измерениями НИЧЕГО доказать нельзя (и, следовательно, опровергнуть тоже нельзя). Доказательство вообще устроено ПО-ДРУГОМУ. Доказывая, мы осуществляем вывод (строго говоря, согласно правилам вывода) из аксиом последовательности утверждений (лемм, теорем), последней из которых будет доказываемое. Понять, что происходит, когда человек что-нибудь доказывает, очень важно: это знание о сути человека. Ведь он не даром SAPIENS, то есть разумный, то есть ДОКАЗЫВАЮЩИЙ И ТРЕБУЮЩИЙ ДОКАЗАТЕЛЬСТВ.
Вот одна из задач, которая могла бы быть продемонстрирована в этот период как нечто весьма поучительное. Рассмотрим замкнутый контур. Внутри – бесконечное множество точек. Возьмём среди них миллион. Одной линией можно «перечеркнуть» контур, разделив его на две области, в каждой из которых находится некоторое число точек. Я утверждаю: всегда прямую линию можно провести так, что число точек будет делиться поровну, по 500 000 в каждой области. Всегда.
Нарисовать миллион точек невозможно. Если рисовать даже по одной точке в секунду, то потребуется миллион секунд, то есть 16667 минут, то есть 278 часов, то есть 12 суток непрерывного тыканья. Нет желающих? Очень хорошо.
Значит: это утверждение ТРЕБУЕТСЯ ДОКАЗАТЬ. Мало ли, что это утверждаю я – а вдруг ошибаюсь? Ведь я тоже человек: не боги горшки обжигают! Ну так как? Давайте думать.
1.Через две точки можно провести прямую, да? (Да). 2.Можно взять какие-нибудь две точки из миллиона и провести через них прямую, да? (Да). 3. Можно взять КАЖДЫЕ две точки из миллиона и провести прямые через них, да? (Да). 4. Некоторые из этих прямых, возможно, сольются в одну, и тогда какая-нибудь прямая пройдёт через три точки, но мы на это не будем обращать внимания. Согласны? (Да). 5. Прямых будет какое-то конечное число, да? (Да). 6. А теперь возьмём какую-нибудь точку ВНЕ КОНТУРА и не лежащую ни на какой из прямых. Это возможно, не так ли? (Да). 7. А теперь рассмотрим луч, исходящий из этой точки и совершающий круг на плоскости, подобно минутной стрелке. Понятно объясняю? (Да). 8. Этот луч не лежит ни на одной из прямых, а поэтому в каждый момент может пересекать не больше одной точки, выбранной нами внутри контура. Так? (Верно: если бы две, то он лежал бы на какой-нибудь прямой). 9. Значит, количество точек, которые он отделяет в своём движении по кругу увеличивается в одной области и уменьшается в другой ПО ЕДИНИЦЕ. (Да). 10. Ну теперь всё: остановим луч, когда с обеих сторон будет по 500 000 точек.