Основы статистической обработки педагогической информации - страница 24



А еще, select() можно использовать для переименования переменных, но это редко когда бывает полезным, так как отбрасывает не упомянутые явно переменные. Вместо этого для переименования используется функция rename(), который является вариантом select(), но сохраняет все переменные, которые не указаны явно:

rename(flights, год = year)

Другой вариант использования select(), совместно со вспомогательной функцией everything(), бывает необходим если есть несколько переменных, которые нужно переместить в начало базы данных. Например, месяц (month) и день (day) вылета будут показаны первыми при выводе данных из таблицы, содержащей информацию обо всех авиаперелётах (flights) по команде:

select (flights, month, day, everything ())

Аналогично запланированную дату и время полёта (time_hour), и время, проведенное в воздухе, выраженное в минутах (air_time) можно перекинуть в начало.

Упражнения

1. Примените мозговой штурм, чтобы найти как можно больше способов выборки значений переменных содержащих информацию о времени из базы данных flights.

2. Что произойдет, если имя одной переменной использовать несколько раз при вызове функции select()?

3. Что делает функция one_of()? Насколько полезно её применение в сочетании с вектором c("month", "day")?

4. Является ли результатом выполнения следующего кода неожиданным? Что вспомогательные функции выбора переменных в нём возвращают по умолчанию? Как изменить их значение по умолчанию?

select(flights, -contains("TIME"))

Помимо выборки существующих столбцов, полей таблицы базы данных, переменных, бывает необходимым добавление новых столбцов, которые хранят значения, являющиеся функциями от существующих. Это выполняется путём обращения к функции mutate(), которая всегда добавляет новые столбцы в конце имеющегося набор данных. Поэтому создадим более узкий набор данных, чтобы видеть новые переменные. Помните, что в RStudio самый простой способ увидеть все столбцы таблицы это вызов функции view(). Создадим укороченный_вариант_таблицы, содержащий все поля между «год» (year) и «день» (day) включительно, плюс поля, содержащие информацию о задержках (заканчивающиеся на delay), покрытом расстоянии (distance) и времени полёта (air_time) в минутах:

укороченный_вариант_таблицы <– select(flights,

year:day,

ends_with("delay"),

distance,

air_time)

Теперь добавим вычисляемые поля с информацией об опоздании, – задержке вылета минус задержка прилета, в минутах, и о средней скорости полёта. Обратите внимание, что можно ссылаться на столбцы, которые уже созданы. Если вдруг захотите сохранить только новые переменные, то используйте transmute() вместо mutate():

mutate(укороченный_вариант_таблицы,

опоздание = dep_delay – arr_delay,

скорость = distance / air_time * 60,

часы_полёта= air_time / 60,

опоздание_в_каждом_часе = опоздание / часы_полёта )

Существует много функций для создания новых переменных, которые можно комбинировать с mutate(). Ключевое их свойство заключается в том, что функция должна быть пригодной для обработки векторов, то есть она должна принимать вектор значений на входе и возвращать вектор с тем же количеством значений на выходе. Нет возможности перечислить все такие функции, но приведём некоторые из реально используемых.

Арифметические операторы: +, -, *, /, ^. Все они работают с векторами используя так называемые «правила рециркуляции», заключающиеся в том, что если один параметр короче другого, то произойдет автоматическое удлинение до равного размера путём клонирования короткого вектора достаточное количество раз. Это полезно, когда один из аргументов – число. В примере выше так были вычислены часы_полёта делением вектора на скаляр, а скорость умножением вектора на скаляр. Арифметические операторы также полезны в связке с агрегирующими функциями, о которых узнаете позже. Например, x / sum(x) вычисляет долю от общей суммы значений переменной, а y – mean(y) вычисляет отклонение величины от среднего.