От атомов к древу: Введение в современную науку о жизни - страница 6





До начала звездообразования во Вселенной были только водород, гелий и следовые количества лития. Насколько мы сейчас знаем, все элементы тяжелее лития синтезируются только в звездах и распространяются в результате взрывов сверхновых{10}. Это означает, что живым организмам было просто не из чего образоваться, пока не закончился жизненный цикл хотя бы первого поколения звезд и эти звезды не взорвались.

Авторами самой знаменитой статьи, описавшей механизм синтеза химических элементов в звездах, были четверо ученых: Маргарет Бербидж, Джеффри Бербидж, Уильям Фаулер и Фред Хойл. Эту статью часто называют по инициалам авторов “B>2FH” (“бэ-квадрат-эф-аш”). Инициатором исследования был астрофизик Хойл: именно он первым догадался, что в звездах может синтезироваться не только гелий, но и углерод. Благодаря Хойлу в работу включились сперва профессиональный физик-ядерщик Фаулер (поначалу он был настроен скептически, но Хойл его переубедил), а потом астрономы Бербиджи. В сети легко найти замечательную фотографию, на которой все четверо отмечают 60-й день рождения старшего из них – Фаулера, а последний радуется действующей модели паровоза, которую ему подарили коллеги.

Статья B>2FH опровергла более раннюю гипотезу Георгия Гамова, который считал, что ядра всех элементов синтезировались прямо во время Большого взрыва и с тех пор их концентрации остаются примерно постоянными. На самом деле гораздо вероятнее, что в первые миллиарды лет после Большого взрыва Вселенная была чисто водородно-гелиевой. И только потом она стала обогащаться тяжелыми элементами с помощью сверхновых звезд (“тяжелыми элементами” мы сейчас называем все, что тяжелее гелия или, в крайнем случае, лития).

Космическая эволюция

Итак, тяжелые элементы синтезируются внутри звезд и рассеиваются в пространстве, когда эти звезды взрываются в качестве сверхновых. Влияние сверхновых звезд на элементный состав Вселенной, таким образом, огромно. Рассеянные их взрывами тяжелые элементы входят в состав космической пыли, а она конденсируется в звезды следующего поколения – уже с полноценными системами, включающими землеподобные планеты. Этой темы мы еще коснемся позже, в главе 13.

Превращение водорода и гелия в более тяжелые элементы было одним из промежуточных этапов космической эволюции, которая привела к возникновению Солнечной системы, жизни и человека. Теория B>2FH (если она верна) сама по себе показывает, что этой эволюции не могло не быть. В древней водородно-гелиевой Вселенной никогда бы не возникли ни Земля, ни жизнь. Сама возможность их появления стала результатом длинной цепочки событий космического масштаба, в ходе которых весь мир не раз качественно менялся (например, возникали ранее не существовавшие химические элементы, а вместе с ними – новые типы звезд). Вот такое качественное изменение мы и называем эволюцией. Это единый процесс, охватывающий физические, химические и биологические явления.

Тут стоит притормозить, чтобы уточнить значение слова “эволюция”. Традиционно существует два понимания этого термина – “узкое” и “широкое”. Эволюция в “узком” смысле определяется разными авторами несколько по-разному, но в любом случае она ограничивается чисто биологическими процессами и факторами (такими, например, как изменение частот генов в популяциях или перестройка жизненных циклов). Эволюция в “широком” смысле включает в себя не только исторические процессы, изучаемые биологией, но и исторические процессы, изучаемые другими науками – физикой, химией, астрономией, геологией, социальной историей. “Широкое” понимание эволюции можно встретить у Феодосия Григорьевича Добржанского, знаменитого генетика, одного из крупнейших биологов XX века.