ПАРАЛЛЕЛЬНЫЕ (научно-фантастическая повесть) - страница 30
Его постоянно терзала запредельность очевидных прописных истин.
Одной из этих туманных истин был пятый постулат Эвклида, а именно – «недоказуемость» его в том, что две параллельные линии при их бесконечном продолжении не пересекаются. Отсюда следовало предположение, что и сумма углов треугольника в бесконечных пространствах не равна 180о, а больше или меньше этого. Поэтому для космологии расчеты «первобытной» геометрии признавались неточными. Как указывается в справочниках, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию, однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии, – привел цитату Крус и ухмыльнулся.
─ Мне такие прямые измерения не известны. Сам Лобачевский пытался измерить угловые параметры пространства Вселенной между отдаленными звездами, но у него ничего не получилось кроме постулатов Евклида. Это было объяснено неточностью инструментальных измерений того времени. Но и сейчас подобные измерения нм к чему не приводят. С моей точки зрения это неизбежно, поскольку мы проводим измерения не в фактическом пространстве, а измеряем, в значительной степени, его двухмерную проекцию, которая не признает изменения суммы углов треугольника.
Однако в 1868-м году итальянский математик, профессор римского университета Эудженио Бельтрами построил модель пространства для неевклидовой геометрии. В своей работе «Опыт интерпретации неевклидовой геометрии» он показал, что наряду с плоскостями и сферическими поверхностями, на которых «законно» осуществляется евклидова геометрия, существуют и другие реальные поверхности, на которых частично действует планиметрия Лобачевского.
Представьте полукружие, которое вращается вокруг своего диаметра, и вы получите сферу. А теперь взгляните на рисунок, на котором вместо полукружия изображена очень любопытная кривая, называемая «трактриса».
Вращая трактрису вокруг прямой, к которой стремятся её свободные концы, мы получим модель пространства, которая получила название «псевдосфера». Формально эта пространственная фигура может быть названа «сферой», ибо она образована путём вращения кривой, то есть тем же способом, каким образуется сфера. И эту сферу действительно можно назвать «мнимой», поскольку образована она вращением не дуги, которая имеет так называемую «положительную кривизну» («выпуклость»), а вращением трактрисы, имеющей отрицательную кривизну, или «вогнутость».
Добавим, что трактриса обладает свойствами гиперболы, поэтому геометрию Лобачевского называют ещё и «гиперболической».
Если провести ещё одну параллель со словом «гипербола» в значении «преувеличение», то мы вновь вернёмся к тому, что законы псевдосферы начинаются там, где привычное замкнутое пространство сферы «преувеличивается» до размеров Вселенной.
─ Довольный своим юмористическим парадоксом ухмыльнулся математик.
─ Как видим в этой «преувеличенной» математической фантазии сумма углов треугольника, нарисованного на поверхности псевдосферы, значительно меньше двух прямых.
В неэвклидовой геометрии имеются попытки сопряжения пространства Вселенной с ограниченным пространством Эвклида. Идея, конечно, стоящая, если только пространство Лобачевского и Римана не геометрическая фантазия. Однако формальная математическая замена нормальных прямых линий на «геодезические», и касательные плоскости на «частично соприкасающиеся со сферой» не дают никакого реального представления о таком контакте. Весь эффект соприкасания остаётся погребенным « в премудрости» простых математических формул.