Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - страница 2



ОБЩИЕ ПОЛОЖЕНИЯ

В  последнее  время  стали  популярными  такие  слова, как  искусственный интеллект, машинное обучение, большие данные (big data). Эти термины входят в повседневное употребление и уже встречаются не только в узконаправленных специализированных областях. Не стала исключением и сфера здравоохранения: автоматизированные системы диагностики, системы распознавания медицинских записей и естественного языка, системы анализа и предсказания событий, автоматической классификации и сверки информации, чат-боты поддержки пациентов, электронная медицинская карта и многое другое – результаты масштабной цифровизации в данной сфере4,5. Столь мощный прогресс цифровых технологий в Российской Федерации поддерживается Национальной стратегией развития искусственного интеллекта на период до 2030 года [1].

Искусственный интеллект (ИИ) – комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений [1].

Технологии искусственного интеллекта (ТИИ) – технологии, основанные на использовании искусственного интеллекта, включая компьютерное зрение, обработку естественного языка, распознавание и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы искусственного интеллекта [1].

В соответствии с Национальной стратегией использование технологий искусственного интеллекта в социальной сфере способствует созданию условий для улучшения уровня жизни населения, в том числе за счет повышения качества услуг в сфере здравоохранения, включая профилактические обследования, диагностику, основанную на анализе изображений, прогнозирование возникновения и развития заболеваний, подбор оптимальных дозировок лекарственных препаратов, сокращение угроз пандемий, автоматизацию и точность хирургических вмешательств.

Основные факторы развития ТИИ – это увеличение объема доступных данных, в том числе данных, прошедших разметку и структурирование, а также постоянное развитие информационно-телекоммуникационной инфраструктуры для обеспечения доступа к наборам таких данных.

С развитием медицины, повышением ее доступности и повсеместного внедрения цифровых технологий в медицинскую практику6 отмечается высокий рост количества медицинских данных: клинических, лабораторных и инструментальных7. Данные – представление информации в формализованном виде, пригодном для передачи, интерпретации и обработки [2].

Большой объем данных способствует оптимальной организации интересующей сферы (в частности, здравоохранения) для достижения наилучших результатов работы. Данные могут быть использованы для прогнозирования текущих тенденций определенных параметров и будущих событий. В последние годы в медицинской практике активно внедряются электронные медицинские карты и медицинские информационные системы, что приводит к необходимости стандартизации медицинской информации.

Например, результаты лабораторных (патоморфологические исследования, клинические анализы, генетические исследования и т.д.), лучевых (КТ, МРТ, ММГ, УЗИ, рентгенография и т.д.) и сигнальных (ЭКГ, ЭЭГ, ЭНМГ и т.д.) исследований максимально стандартизованы и оцифрованы, что способствует росту количества данных по этим направлениям, инструментов для их обработки (программное обеспечение, предназначенное для обработки медицинских данных), передачи и хранения, и, как следствие, развитию ТИИ в этой области