Повышение эффективности производства посредством интеграции статистических методов в функционально-стоимостный анализ - страница 8



Стремительное распространение пакетов прикладных программ позволило сделать доступными и наглядными современные методы и подходы статистического прогнозирования. При этом применение эконометрического программного обеспечения позволяет создать для пользователя уникальную среду, в которой статистическая обработка данных становится увлекательным исследованием, позволяющим получать многовариантные решения. Пользователь освобождается от всей черновой работы (проведение трудоемких расчетов, построение таблиц и графиков), на его долю остается исследовательская, творческая работа: постановка задачи, выбор методов прогнозирования, оценка качества полученных моделей, интерпретация результатов. Для этого необходимо иметь определенную подготовку в области прикладной статистики, знать методы и подходы статистического анализа и прогнозирования временных рядов [43]. В исследовании использовались экономико-математические модели, построенные с помощью Microsoft Excel и ППП Statistica:

1) метод аналитического выравнивания – прогнозирование по тренду позволяет определить основную тенденцию;

2) метод Census II – позволяет выделять сезонную и случайную компоненту, то есть провести декомпозицию ряда, разложение его на составные части;

3) метод Exponential smoothing & forecasting (экспоненциальное сглаживание и прогнозирование) – позволяет учитывать результат прогноза, сделанного на предыдущем шаге;

4) прогнозирование по модели Бокса-Дженкинса – ARIMA – процесс (ARIMA & autocorrelation functions) позволяет привести временной ряд к стационарному виду.

Одним из наиболее перспективных направлений исследования и прогнозирования одномерных временных рядов считаются адаптивные методы.

При обработке временных рядов, как правило, наиболее ценной бывает информация последнего периода, так как необходимо знать, как будет развиваться тенденция, существующая в данный момент, а не тенденция, сложившаяся в среднем на всем рассматриваемом периоде. Адаптивные методы позволяют учесть различную информационную ценность уровней временного ряда, степень «устаревания» данных.

Важнейшее достоинство адаптивных методов – построение самокорректирующихся моделей, способных учитывать результат прогноза, сделанного на предыдущем шаге [43].

Благодаря отмеченным свойствам адаптивные методы особенно удачно используются при оперативном краткосрочном прогнозировании.

У истоков адаптивных методов лежит модель экспоненциального сглаживания. Экспоненциальное сглаживание – это пример самообучающейся модели. К ее безусловным достоинствам относится чрезвычайная простота вычислений, выполняемых итеративно, причем массив прошлой информации уменьшен до единственного значения S>t-1.

Часто экономические показатели, представленные временными рядами, имеют настолько сложную структуру, что моделирование таких рядов путем построения моделей тренда, сезонности и применения других традиционных подходов не приводит к удовлетворительным результатам. Во временном ряду ошибок остаются зависимости, которые можно моделировать.

Наиболее распространенные модели стационарных рядов – модели авторегрессии и модели скользящего среднего [43].

Руководству предприятий (фирм, компаний) необходимо оценивать работу организации в перспективе и принимать решения с точки зрения возможных изменений в будущем. Все это и позволяют сделать методы статистического прогнозирования.