Предсказываем тренды. С Rattle и R в мир моделей классификации - страница 23



Если рассуждать в терминах двух наших целевых переменных «лонг/вне рынка» и «вне рынка/шорт», то становится очевидной применение рассматриваемых показателей:

– модель с высокими значениями чувствительности для первой целевой переменной «лонг/вне рынка» проявится в повышенной диагностики «лонгов»;

– модель с высокими значениями специфичности для второй целевой переменной «вне рынка/шорт» проявится в повышенной диагностики «шортов».

Забегая вперед, приведу график кривой ROC, в которой осями является чувствительность Se, она же TPR, и дополнение до единицы специфичности 1 – FPR.


Рис.5.1. Кривая ROC для модели случайного леса.


График дополнен прямой х=у.

Для идеального классификатора график ROC-кривой проходит через верхний левый угол, где доля истинно положительных случаев составляет 100% или 1.0 (идеальная чувствительность), а доля ложно положительных примеров равна нулю. Поэтому чем ближе кривая к верхнему левому углу, тем выше предсказательная способность модели. Наоборот, чем меньше изгиб кривой, и чем ближе она расположена к диагональной прямой, тем менее эффективна модель. Диагональная линия соответствует «бесполезному» классификатору, то есть полной неразличимости двух классов.

При визуальной оценке ROC-кривых расположение их относительно друг друга указывает на их сравнительную эффективность. Кривая, расположенная выше и левее, свидетельствует о большей предсказательной способности модели. Так, на рис.5.3 две ROC-кривые совмещены на одном графике. Видно, что модель «rf» лучше модели «ada».


Рис.5.2. Сравнение кривых ROC для модели ada и модели rf.


Визуальное сравнение кривых ROC не всегда позволяет выявить наиболее эффективную модель. Своеобразным методом сравнения ROC-кривых является оценка площади под кривыми. Теоретически она изменяется от 0 до 1.0, но, поскольку модель всегда характеризуются кривой, расположенной выше положительной диагонали, то обычно говорят об изменениях от 0.5 («бесполезный» классификатор) до 1.0 («идеальный» классификатор). Эта оценка может быть получена непосредственно вычислением площади под многогранником, ограниченным справа и снизу осями координат и слева вверху – экспериментально полученными точками (рис. 5.3). Численный показатель площади под кривой называется AUC (Area Under Curve). В нашем случае мы получили следующие величины:

Area under the ROC curve for the ada model on zz_1_5 [validate] is 0.8702
Area under the ROC curve for the rf model on zz_1_5 [validate] is 0.8904

Площадь под кривой ROC для модели rf равна 0.8904, а для модели ada равна 0.8702, что подтверждает визуальное наблюдение.

С большими допущениями можно считать, что чем больше показатель AUC, тем лучшей прогностической силой обладает модель. Однако следует знать, что:

– показатель AUC предназначен скорее для сравнительного анализа нескольких моделей;

– AUC не содержит никакой информации о чувствительности и специфичности модели.

В литературе иногда приводится следующая экспертная шкала для значений AUC, по которой можно судить о качестве модели:


Таблица 5.2. Шкала значений AUC


Идеальная модель обладает 100% чувствительностью и специфичностью. Однако на практике добиться этого невозможно, более того, невозможно одновременно повысить и чувствительность, и специфичность модели. Компромисс находится с помощью порога отсечения, т.к. пороговое значение влияет на соотношение