Применение антимикробных полимерных материалов в медицине и при упаковке продуктов питания - страница 3
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств:
– способность образовывать высокопрочные анизотропные высоко ориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям;
– способность в высокоэластичном состоянии набухать перед растворением;
– высокая вязкость растворов.
Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавкие и неспособны к высокоэластичным деформациям.
Полимеры могут вступать в следующие основные типы реакций:
– образование химических связей между макромолекулами (так называемое сшивание), например, при вулканизации каучуков, дублении кожи;
– распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимер-аналогичные превращения);
– внутри молекулярные реакции, протекающие между функциональными группами одной макромолекулы, например, внутри молекулярная циклизация.
Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1 – 2 поперечные связи.
Одной из важнейших физико-химической характеристикой любого высокомолекулярного соединения является его молекулярная масса (ММ). Точное название этой величины – относительная молекулярная масса полимера. Она определяется как средняя величина от относительных ММ полимерных молекул. Числовое значение ММ полимеров определяется с одной стороны видом молекулярно-массового распределения в нем и с другой стороны – способом числового усреднения. Значение ММ определяет важнейшие свойства полимеров и пути их переработки в изделия, в том числе вторичной. Например, при росте молекулярной массы критически изменяются свойства полимеров, причем при достижении определенных предельных значений высоких молекулярных масс свойства могут полностью меняться. Например, простейший полимер полиэтилен при низких молекулярных массах имеет свойства близкие к твердым парафинам (полиэтиленовый воск). Такой полимер легко течет и в расплавленном виде ведет себя аналогично жидкостям. При повышении ММ полиэтилен приобретает больше вязких свойств и перерабатывается последовательно методами литья под давлением, выдувного формования, экструзии, прессования и т.д. Наконец, полиэтилен, обладающий очень большими значениями молекулярных (в несколько миллионов) масс полимера, так называемый сверх высокомолекулярный полиэтилен (СПМПЭ) практически не способен к плавлению и вязкому течению, а его переработка крайне затруднена. Таким образом, наблюдается существенный рост вязкости расплава и раствора полимеров при повышении их молекулярной массы. Этот процесс делает их переработку затрудненной. Считается, что наиболее удобные для переработки значения ММ составляют для полиэтилена от 100 000 до 300 000, для полистирола от 300 000 до 400 000, для полиформальдегида (ПОМ) от 40 000 до 150 000 атомных единиц массы.