Рассуждения об основах физики - страница 10
Радиус этой сферы равен ct, а центр сферы находится в точке O, то есть там же, где находится и источник света. И это соответствует физической ситуации. Но вот появляется наблюдатель (со своей системой координат O>IX>IY>IZ>I) и согласно преобразованиям Лоренца уравнение сферы становятся таковым:
Но сфера (2. 4) это уже совсем другая сфера, нежели сфера (2. 3). Во-первых, радиус сферы (2. 3) не равен радиусу сферы (2. 4), потому, что в преобразованиях Лоренца t не равно t>I. Во-вторых, в центре сферы (2. 4) находится теперь уже не источник света, а наблюдатель (точка O>I), источник света как оставался в точке O (центр сферы (2. 3)), так и остается в ней. Сфера (2. 3) реально существующая, таинственным образом преобразовалась в другую, не равную самой себе сферу (2. 4), только потому, что изволил появиться наблюдатель. Все это означает, что преобразования Лоренца отменяют Аксиому (она уже не действует).
Последовательный физик должен сказать: «Мы вывели преобразования Лоренца, но теперь измерения потеряли смысл». Но последних четырех слов сторонники теории относительности почему-то никогда не говорят. Возможно, они думают, что при измерениях они не копируют действия математика, а действуют как-то гораздо умнее. Но как? Они это не объясняют. И весьма сомнительно, что они это когда-нибудь объяснят.
Теперь нам становится понятным, почему ситуация с линейками, о которых велись рассуждения выше, становится неразрешимой. Верность или неверность способов измерения потеряла смысл, потому что ещё до этого (т. е. при выводе преобразований Лоренца) потеряло смысл понятие измерения.
А как обстоят дела с измерениями в классической механике? Здесь используются преобразования Галилея, а они, как легко видеть, не отменяют Аксиомы. В самом деле, преобразования Галилея преобразуют сферу (2. 3) в такую:
Сфера (2. 5) совпадает со сферой (2. 3). Радиус сферы (2. 5) равен радиусу сферы (2. 3) потому, что в преобразованиях Галилея t = t>I. Наличие слагаемого Vt в скобках первого члена говорит о том, что центр сферы (а вместе с ним и источник света) двигаются по отношению к наблюдателю со скоростью (– V) или (что, то же самое), наблюдатель двигается по отношению к центру сферы со скоростью V. И все это, ни коим образом, не противоречит реальной физической ситуации. Преобразования Галилея не отменяют Аксиомы; напротив, они ей строго подчиняются. Поэтому в классической механике измерения возможны и имеют ясный физический смысл.
2. 5. Релятивистская сфера
Но есть еще опыт (наипростейший, очищенный от всего лишнего, что могло бы помешать правильно рассуждать). И мы не можем не упомянуть о нем. Пусть точечный источник света испускает сферический волновой фронт. Каков будет радиус сферы по истечению времени T? Ответ: радиус будет равен cT. А каков будет её диаметр? Ответ (релятивистский): согласно постулату о постоянстве скорости света диаметрально противоположные точки этой сферы удаляются друг от друга также со скоростью света c, поэтому диаметр сферы также равен cT. Диаметр сферы оказался равен её радиусу! Легко видеть, что при других скоростях расширения сферы (меньших c), «релятивистская» сфера всегда будет обладать следующим, неприятным, свойством: