Читать онлайн Дэвид Боданис - Самая большая ошибка Эйнштейна
Издание опубликовано по соглашению с Conville & Walsh, Ltd. и Литературным агентством «Синопсис»
Деривативное электронное издание на основе печатного аналога: Самая большая ошибка Эйнштейна / Д. Боданис; пер. с англ. А. Капанадзе. – М.: Лаборатория знаний, 2017. – 304 с.: ил. – ISBN 978-5-00101-078-4.
В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации
Copyright © David Bodanis, 2016
© Перевод на русский язык, оформление, Лаборатория знаний, 2017
Universum
О науке, ее прошлом и настоящем, о великих открытиях, борьбе идей и судьбах тех, кто посвятил свою жизнь поиску научной Истины
Моему сыну Сэму
Эйнштейн идет домой. (Принстон, 1953 г.)
Пролог
Туристы, приезжавшие в Принстон в 1953 году, обычно останавливались на тротуаре напротив обшитого вагонкой дома на Мерсер-стрит, выкрашенного в белый цвет. Улицу они, как правило, не переходили, но лишь с большим трудом сдерживали возбуждение, едва завидев старика, медленно бредущего домой из университетского кампуса. Часто на нем было длинное пальто, а если нью-джерсийский ветер оказывался особенно пронизывающим, то и темная вязаная шапочка поверх его знаменитой растрепанной шевелюры.
Самые отважные туристы иногда все-таки пересекали улицу, чтобы выразить восхищение или попросить автограф. Но большинство предпочитало держаться на почтительном расстоянии, поскольку явно чувствовало робость – или чрезмерный восторг. Ибо этот старик, идущий в каких-то метрах от них, был не кто иной, как Альберт Эйнштейн, величайший гений всех времен и народов.
Да, Эйнштейн по праву считался самым знаменитым из живших тогда ученых, однако, несмотря на свою славу, он обычно ходил один – ну, или со своим давним другом. Да, его продолжали время от времени публично чествовать, по-прежнему постоянно приглашали на торжественные обеды и даже на кинопремьеры (голливудские звезды обожали фотографироваться с ним), но действующим ученым уже много лет не было до него никакого дела. И не из-за его возраста. Великому датскому физику Нильсу Бору было в то время шестьдесят восемь (не так уж мало по сравнению с Эйнштейном, которому исполнилось семьдесят четыре), однако Бор оставался настолько открытым по отношению к новым идеям, что талантливые аспиранты буквально ломились в его блистательный копенгагенский институт, чтобы поработать под его руководством или просто пообщаться с ним. А вот Эйнштейн уже несколько десятков лет оставался изолирован от магистральных путей научных изысканий. Разумеется, во время его редких семинаров в Институте перспективных исследований всегда раздавались вежливые аплодисменты, но такими рукоплесканиями могли бы встречать седовласого ветерана, выезжающего в своем инвалидном кресле рассказать о давней войне. Идеи Эйнштейна больше не принимали всерьез даже многие из его ближайших друзей.
И он наверняка чувствовал эту изолированность, отъединен-ность, отчужденность. Бывало, в его доме толпились коллеги, заполнявшие комнаты гулом голосов, так и пышущие молодой энергией. Но сегодня все было тихо. Его вторая жена, все более дородная и все более болтливая Эльза, скончалась несколько лет назад, как и Майя, его сестра, которую он так любил.
Смерть сестры стала особенно сильным ударом для Эйнштейна. Еще в детстве, в Мюнхене 1880-х годов, они были неразлучны; часто поддразнивали друг друга и любили строить карточные домики, похожие на замки. И когда особенно затейливое сооружение рушилось от порыва ветра, Альберт тотчас же принимался возводить его снова. «Может, у меня и меньше умений, чем у других ученых, зато у меня ослиное упрямство», – любил повторять он.
Эйнштейн и в старости сохранил юношеское упорство, но его здоровье было уж не то, что в молодые годы. Комната, которую он считал главной и в которой держал свои книги и бумаги, располагалась на втором этаже, неподалеку от спальни Майи. Он карабкался вверх по лестнице не спеша, то и дело останавливаясь, чтобы перевести дух. Может, это и неважно, с какой скоростью двигаться. Когда он устроится в своем кабинете, ему незачем будет спешить. К его услугам будет безграничное время.
Как величайший ум XX века оказался в таком одиночестве?
Берлин, 1915 год. Идет Первая мировая война. Эйнштейн только что вывел удивительное уравнение: не свое знаменитое E = mc²(оно появилось десятилетием раньше – в 1905-м), а нечто еще более мощное – уравнение, лежащее в самой основе того, что именуется общей теорией относительности. Это – одно из самых выдающихся достижений человечества, столь же ошеломляющее, как произведения Баха или Шекспира. Эйнштейновское уравнение 1915 года опиралось лишь на два основных параметра, однако позволяло выявить невообразимые прежде свойства пространства и времени, объяснить, как зародилась Вселенная и каким образом она, скорее всего, погибнет. Эйнштейн сам был поражен. «Сбылись мои самые дерзкие мечты», – писал он в том же году своему лучшему другу.
Но в его мечтания вскоре вмешалась реальность. Уже через два года, в 1917-м, он осознал, что астрономические данные о форме Вселенной как будто противоречат его общей теории относительности. Не в силах объяснить такое расхождение, он смиренно внес поправки в свое новое уравнение, введя дополнительный параметр, лишивший это соотношение былой простоты.
Как выяснилось, компромисс сей оказался временным. По прошествии еще некоторого количества лет появились новые научные данные, подтвердившие справедливость его первоначальной идеи, гениальной и очень изящной, так что Эйнштейн вернул своему уравнению исходный вид. Эту временную модификацию он назвал «величайшей глупостью в моей жизни», поскольку она разрушила красоту уравнения, которое он вывел в 1915 году. Но главная ошибка Эйнштейна была еще впереди.
После того случая Эйнштейн решил, что зря пошел на поводу у столь зыбких экспериментальных свидетельств – ему просто следовало подождать, пока астрономы не поймут, что они сами заблуждались. Сделал он и еще один вывод: в самых важных вопросах больше не доверять экспериментальным данным. Когда в дальнейшем критики пытались представить эмпирические доказательства, противоре-чавшие его более поздним теориям, ученый игнорировал эти факты: он был уверен, что его выкладки рано или поздно снова подтвердятся.
Реакция по-человечески очень понятная. Однако она привела к катастрофическим последствиям, ибо все больше подрывала доверие ко всему, за что бы ни брался Эйнштейн, особенно в быстро развивавшейся новомодной науке о сверхмалых объектах – квантовой механике. Друзья (например, тот же Нильс Бор) пытались его вразумить. Они знали, что исключительной мощи интеллект Эйнштейна способен вновь перевернуть мир, если только великий физик смирится с новыми открытиями очередного поколения экспериментаторов – с теми из этих открытий, которые действительно вполне реальны и достоверны. Но этого Эйнштейн сделать не мог.
Порой его втайне посещали сомнения, но он безжалостно с ними расправлялся. В своей теории 1915 года он вскрыл структуру, лежащую в основе нашей Вселенной, и оказался прав, когда все остальные ошибались. И теперь он никому не позволит увлечь себя по неверному пути.
Эта убежденность отгородила его от интереснейших работ в сфере квантовой механики и разрушила его репутацию среди серьезных специалистов. Вот почему в кабинете на Мерсер-стрит он оказался столь одинок.
Как это произошло? Как гений достигает взлета и как он угасает? Как мы справляемся с неудачей и старением? Как утрачиваем привычку доверять другим и можем ли мы вернуть ее? Вот темы этой книги – наряду с идеями Эйнштейна (верными и неверными) и теми шагами, которые привели его к ним. В каком-то смысле перед вами двойная биография: история гения, не застрахованного от заблуждений, но заодно и рассказ о них – о том, как они возникли, как росли, как укоренялись в его сознании, причем столь глубоко, что даже Эйнштейн, при всей своей мудрости, уже не мог освободиться от них.
Гениальность и спесь, триумфы и неудачи зачастую неразделимы. Эйнштейновское уравнение 1915 года и та теория, основой которого оно стало, явились, быть может, главным достижением в его жизни, но при этом они посеяли семена его самого впечатляющего промаха. Чтобы понять, чего же достиг Эйнштейн в 1915 году и как рождались его заблуждения, необходимо обратиться к годам его молодости и к тем тайнам, которые уже тогда будоражили его ум.
Часть I
Истоки гениальности
Эйнштейн в университете (ок. 1900 г.)
Глава 1
Викторианское детство
В 1879-м, в год рождения Эйнштейна, в европейской науке доминировали две великие идеи, и обе они сыграли немалую роль при создании величайшей из его работ, обеспечив ей должный контекст и фон. Первая идея – признание того, что силы, движущие великими промышленными цивилизациями (сжигание угля в топках громадных паровозов; взрывы пороховых зарядов в пушках боевых кораблей, удерживающих в подчинении колонизированные народы; даже слабенькие электрические импульсы в подводных кабелях, разносящих телеграфические послания по всему миру) представляют собой различные проявления фундаментальной сущности под названием Энергия. И это стало одной из основополагающих научных идей Викторианской эпохи.
Ученые конца XIX века знали, что энергия ведет себя согласно неким неизменным принципам. Шахтеры добывали уголь, вырубая его из земли. Инженеры научились под давлением закачивать газы, которые получали при спекании этого угля, в особые трубки, применяемые в уличных фонарях тогдашнего Лондона. Но при несчастном случае энергия взрыва светильного газа (энергия разлетающихся осколков стекла, плюс акустическая энергия воздушной волны, плюс энергия всех металлических кусков фонаря, залетевших на близлежащие крыши) будет в точности равняться энергии, присущей самому газу. А если потом один из этих кусков свалится вниз, на мостовую, то звук и энергия его падения плюс возникшие при этом порывы ветра будут в точности равняться энергии, которая подняла этот кусок в воздух.
Смириться с мыслью, что энергию нельзя создать или уничтожить, а можно только преобразовать, нетрудно. Но из этого постулата следуют самые неожиданные выводы. К примеру, один из выездных лакеев королевы Виктории открывает дверцу ее кареты, когда монарх прибывает в Букингемский дворец. Энергия, содержащаяся в плече слуги, начинает покидать это плечо… и при этом точно такое же количество энергии проявляется в движении изукрашенной дверцы экипажа и даже в вызванном трением (и весьма незначительном) повышении температуры петли этой дверцы. Когда же правительница сходит на землю, кинетическая энергия, которую заключало в себе августейшее тело, передается земле под ее ногами, в результате чего ее величество в конце концов встает возле кареты неподвижно, а вот наша планета успевает чуть-чуть дрогнуть на своей околосолнечной орбите.
Все виды энергии связаны между собой, и все виды энергии очень тонко сбалансированы. Сию простую истину назвали законом сохранения энергии. К середине XIX века этот закон получил весьма широкое признание. Когда Чарльз Дарвин продемонстрировал, что традиционный Бог вовсе не обязателен для создания живых видов на нашей планете, доверие к религии серьезно пошатнулось, и тогда представление о неизменности совокупной энергии стало своего рода утешительной альтернативой. Столь волшебная сбалансированность энергии казалась свидетельством того, что некая Божественная десница все же некогда коснулась нашего мира – и, более того, по-прежнему действует среди нас.