Седьмое доказательство - страница 16
В 1687 году Исаак Ньютон в книге «Математические начала натуральной философии» сформулировал закон сохранения движения любого отдельно взятого материального тела, известный сегодня как Первый закон Ньютона или закон инерции:
«Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».
Комментируя эти открытия, и предвосхищая открытие других «законов сохранения», о которых пойдет речь в этой главе, Рене Декарт утверждал, что в основе этих законов лежит… неизменность Бога:
«Бог не подвержен изменению и постоянно действует одинаковым образом» – такова предпосылка, без которой не имел бы силы ни закон инерции, ни закон сохранения количества движения, ни другие основополагающие законы Природы.
Если вспомнить, что единственная по-настоящему замкнутая система – это Вселенная, наиболее общая формулировка закона сохранения количества движения может выглядеть так: «сумма движений всех тел во Вселенной постоянна». Она никогда не меняется на протяжении существования Вселенной. Не имеет значения, какие происходят или могут произойти изменения, при этом общий момент не меняется.
В 1748 году Михайло Ломоносов в письме к Леонарду Эйлеру высказал предположение о том, что не только общее количество движения в системе, но и общее количество вещества в ней (выражаемое массой), есть величина постоянная, то есть сформулировал закон сохранения вещества. А в 1774 году французский химик Антуан Лавуазье экспериментально подтвердил этот вывод, доказав: в пределах замкнутой системы некоторые тела могут терять массу, а другие наращивать, но общая масса системы остается постоянной.
С появлением понятия энергии различные явления, способные совершать работу: движение, тепло, свет, звук, электричество, магнетизм, химические изменения и т. д. – стали считаться различными формами энергии. Возникла мысль о том, что одна форма энергии может преобразовываться в другую, что некоторые тела могут терять энергию, а другие – приобретать энергию, но при этом в любой замкнутой системе общее количество энергии постоянно. Первым высказал такую мысль немецкий физик Герман фон Гельмгольц, а в 1847 году ему удалось убедить весь научный мир в том, что это действительно так. Поэтому он обычно считается первооткрывателем закона сохранения энергии.
В 1905 году Альберт Эйнштейн предложил формулу, связывающую энергию (Е) с массой (m):
Е = mс>2, [7]
где с – скорость света в пустоте.
Исходя из формулы Эйнштейна, масса представляет собой одну из форм энергии, поэтому закон сохранения массы утратил свое значение в качестве самостоятельного закона: стало очевидно, что он является частным случаем закона сохранения энергии.
Закон сохранения энергии, применительно ко Вселенной25 (как замкнутой системе), может быть сформулирован следующим образом: «Вселенная обладает некоторым количеством энергии, и это количество энергии всегда, при любых изменениях внутри Вселенной, остается неизменным, не прибавляется и не исчезает».
Прежде чем делать из этого закона выводы, приведём ещё одно несложное рассуждение.
Энергия в любой системе делится на свободную – совершающую (или готовую в любой момент совершить) работу, и связанную, которая вроде бы есть, но совершать работу в нынешнем виде не способна: чтобы заставить её совершить работу, к ней нужно приложить дополнительную энергию. К примеру, взведённая пружина в часовом механизме совершает полезную работу: вращает стрелки часов. А корпус часов никакой полезной работы не совершает. А ведь он тоже имеет массу, а значит, согласно формуле Эйнштейна, и энергию. Просто это не та энергия, она «связана».