Современная логика - страница 6
В России почти всегда были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие определенный вклад. История отечественной логики не богата, однако, именами.
В конце XIX – начале XX вв., когда научная революция в логике набирала силу, ситуация в отечественной логике была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых современных проблем и постоянно подменявшая логику невнятной методологией науки, изложенной к тому же по чужим и устаревшим образцам.
Ведущие русские философы не имели представления о современной им логике. Их рассуждения были пронизаны религией, постоянные споры о «соборности», «всеединстве» и т. п. – все это больше напоминало схоластику, чем философию, очищенную огнем Просвещения.
Не случайно М. М. Бахтин, всегда считавший себя философом и тяготевший, по его собственному признанию, к Марбургской школе неокантианства, называл отечественную философию конца XIX – начала XX вв. «мыслительством», которому еще предстояло подняться до уровня систематической и современной философии.
Судьба тех немногих русских ученых, находившихся на уровне достижений логики своего времени, чаще всего была незавидной. Сдержанное отношение к математической логике, разделявшееся даже многими русскими математиками, во многом осложнило творчество специалиста в области алгебры логики П. С. Порецкого. Он первым начал читать в России лекции по математической логике, но многие свои работы вынужден был публиковать за рубежом. Физик П. Эренфест еще в 1910 г. высказал гипотезу о возможности применения современной логики в науке и технике. В дальнейшем его гипотеза нашла воплощение в электронно-вычислительной технике.
Классическая логика подходит к противоречию несколько прямолинейно. Согласно одному из ее законов, из логически противоречивого высказывания следует все, что угодно. Это означает, что противоречие запрещается под угрозой разрушения теории. Однако никто реально не пользуется этим разрешением выводить из противоречий все, что попало. Практика научных рассуждений резко расходится в данном пункте с логической теорией. В качестве реакции на это рассогласование с конца 40-х гг. ХХ века начали разрабатываться различные варианты паранепротиворечивой логики. Она исключает возможность выводить из противоречия любые утверждения, так что противоречие перестает быть смертельной угрозой, нависшей над теорией. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в процессе дальнейшего развития теории. Одним из первых, в 1909 г., сомнения в неограниченной приложимости закона противоречия высказал Н. А. Васильев, только что вернувшийся после обучения в Геттингене. Он считал нужным ограничить также действие закона исключенного третьего, и в этом смысле явился одним из идейных предшественников интуиционистской логики.
Новаторские идеи Васильева были восприняты в штыки, истолковывались неверно, а то и просто объявлялись безграмотными. Васильев тяжело переживал подобную «критику» и вскоре оставил занятия логикой.
В 20-е гг. коммунистический режим не наложил еще запрета на занятия современной логикой. Интересных результатов добился в этот период М. Шёйнфинкель. Он высказал идею о возможности сведения фундаментального понятия функции к более элементарным понятиям, что положило начало исчислению ламбда-конверсии А. Чёрча и позднее комбинаторной логике Х. Б. Карри. В последней делается попытка полного исключения всех операторов, переменных и всех связок, кроме обозначения для применения сингулярной функции к ее аргументу. В итоге получается формализованный язык, в котором все простые символы, за исключением единственной связки, являются константами, и который, тем не менее, годится для получения некоторых или даже всех результатов, для которых используются переменные.