Современная логика - страница 7



А. Н. Колмогоров предложил минимальную логическую систему, основанную на еще более решительном неприятии законов классической логики, содержащих отрицание, чем в интуиционистской логике. Он показал, что если в некоторой теореме классической логики, в которой нет связок, отличных от условной связи и отрицания, заменить вхождения каждой переменной на ее двойное отрицание, то получающаяся формула будет теоремой минимальной логики. В. И. Гливенко доказал, что формулировка классической логики получается из формулировки интуиционистской логики добавлением в качестве дополнительной аксиомы только закона исключенного третьего. В 40–50-е гг. А. А. Марков и его школа разработали новую, конструктивистскую интерпретацию интуиционистской логики.

Все это были интересные, но частные результаты, не оказавшие сколько-нибудь заметного влияния на развитие мировой логики. Систематические, получившие резонанс и за рубежом исследования в области современной логики начинаются у нас в стране только в 60-е гг. В этот период выходят в свет книга А. А. Зиновьева, посвященная многозначной логике, и его книга, обосновывающая оригинальную теорию логического следования.

5. Основной принцип логики

Основной задачей логики является отделение правильных способов умозаключения (вывода) от неправильных. Правильные выводы называются также обоснованными, последовательными или логичными.

Правильное умозаключение – умозаключение, схема которого представляет собой закон логики, в силу чего из обоснованных (в случае описательных высказываний – истинных) посылок с необходимостью вытекает обоснованное (истинное) следствие. Если посылки являются обоснованными, можно сказать, что правильное умозаключение всегда дает из таких посылок обоснованное заключение.

Правильным является, например, следующее умозаключение, использовавшееся в качестве стандартного примера еще в Древней Греции:

Все люди смертны. Все греки люди. Следовательно, все греки смертны.

Первые два высказывания – это посылки, третье – заключение.

Еще один пример правильного умозаключения, связанный со знаменитым опытом Фуко.

«Если Земля вращается вокруг своей оси, маятники, качающиеся на ее поверхности, постепенно изменяют плоскость своих колебаний; Земля вращается вокруг своей оси; значит, маятники на ее поверхности постепенно изменяют плоскость своих колебаний».

Как протекает это рассуждение о Земле и маятниках? Сначала устанавливается условная связь между вращением Земли и изменением плоскости колебания маятников. Затем констатируется, что Земля действительно вращается. Из этого выводится, что маятники в самом деле постепенно изменяют плоскость своих колебаний. Это заключение вытекает с какой-то принудительной силой. Оно как бы навязывается всем, кто принял посылки рассуждения. Именно поэтому можно сказать также, что маятники должны изменять плоскость своих колебаний, с необходимостью делают это. Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе. Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме – о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным. Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.

В правильном умозаключении, опирающемся на закон логики, из обоснованных (истинных) посылок всегда с необходимостью следует обоснованное (истинное) заключение. Этим объясняется тот огромный интерес, который логика проявляет к правильным умозаключениям. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т. п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную – быть может, и высокую – вероятность обоснованного (истинного) заключения.