Субъективность. Книга о сознании, о сути субъективного опыта (квалиа) - страница 3



Оптимизация обработки информации и выделение главного являются важнейшим условием эффективной работы ума. Недостаточность такого умения приводит к неверным выводам при рассмотрении массива данных, что и происходит уже много десятилетий при попытках конкретизировать функцию нейрона. А что можно исследовать в мозге, если уже на уровне его основного элемента возникают проблемы понимания?..

Многим нейробиологам сильно мешает то, что они не являются специалистами по схемотехнике и просто не видят в системе то главное, что очевидно для схемотехника.

Схемотехника описывает множество принципов, которые присутствуют при взаимодействиях элементов любой природы, в том числе в мозге: обратная связь (очень широко представлена в нейросети), циклы (удержание стимулов), синхронизация (подстройка по идущему процессу), дискретизация (импульсация в ответ на уровень активности и мн. другое), фильтрация (выделение и контрастирование латеральным торможением, фильтрация вниманием и др.), компенсация (способность нервной системы адаптироваться к изменениям или повреждениям, адаптивные механизмы и др.), регуляция (повсеместно), каскад (последовательная передача сигналов от одного нейрона к другому через синапсы), усиление (вниманием), нелинейность (механизмы модуляции), компарирование (пороговые свойства нейронов), интеграция (суммационные свойства нейронов), стабилизация (тормозными связями и др.), регистры (цепочки действий с подтверждением выполненного), иерархия (вложенность контекстов и уровней) и многие другие.

Но самое главное – опыт построения устройств на таких принципах и понимание сути механизмов чужих устройств. Опыт конструирования и понимания схож с опытом применения слов из букв и фраз из слов. Если нет такого опыта, то сколько не смотри на текст, никакого смысла в нем не возникнет. Человек просто не будет замечать те принципы в конструкции, которые сразу выделяются вниманием опытного схемотехника. Так же как простой нейробиолог не может представить как работает даже несложный усилитель, какими процессами сопровождается усиление сигнала, как обеспечено подавление паразитной генерации, борьба с помехами, регулировка усиления и т. д. и, тем более, разобраться в его схеме, точно те же трудности у него возникают и в понимании схемотехники мозга, в выделении главного в наблюдаемом.

Чтобы разобраться в механизмах мозга катастрофически недостаточно быть простым нейробиологом… Например, академик Ю. Александров в попытках определить функциональность нейронов в мозге сопоставил огромное количество фактических данных, известных ему как нейробиологу, породив сложнейшие теоретические концепции и пришел к выводу, что каждый нейрон является организмом, целенаправленно реагирующим на стимулы импульсацией, которая аналогична действиям индивидуума. И внешне это выглядит очень правдоподобно, такие сопоставления с индивидуумом кажутся достаточно обоснованным, а популяция нейронов становится взаимосвязью целеустремленных особей. Так многие склонны и камню приписывать целенаправленные действий, видя как он катится с горки. А описание персептронной функции нейрона выглядит с такой позиции раздражающе невежественно и вульгарно. Но концепция Ю. Александрова, как и концепция математических графов, ничего не дает в практическом плане понимания функций мозга и его механизмов. А персептронная модель для схемотехника – ясный и очевидный факт, не сравнимый с нагромождением философских интерпретаций.