Сущность виртуальности. От конструкта к онтологическому статусу (Виртуальность мира и миры виртуальных реальностей) - страница 25
Клетка функционирует как химическая машина только благодаря ферментам – катализаторам, способных ускорять различные химические реакции без сколько-нибудь заметного «потребления» самих ферментов. При этом растущие клетки могут одновременно синтезировать тысячи разных молекул белков и нуклеиновых кислот в таких количествах, которые требуются в текущий момент. Катализируемые ферментами метаболические реакции точно отрегулированы и производят лишь столько простых молекул разных видов, сколько необходимо для сборки строго заданного числа молекул нуклеиновых кислот, белков, липидов, полисахаров нужного вида. Более того, живые клетки способны регулировать синтез собственных катализаторов – ферментов. РНК, оставаясь, прежде всего информационной молекулой, способной к репродукции, выступает в качестве катализатора. Некоторые ферменты постоянно помогают добавлять молекулы. Другие удаляют молекулы, посылают их по разным путям метаболизма. Они транспортируют молекулы через клеточные мембраны, перемещают их между разными отделами клетки. ДНК могут передавать наследственную информацию только при наличии целого комплекса конструктивных материалов и специфических белковых молекул – ферментов. Биологи подчеркивают, что каждый организм непрерывно обновляет в себе вещества. В процессах метаболизма ферменты приводят молекулы в возбужденное состояние. Только возбужденные молекулы могут вступать в те реакции, которые делают живое живым, способным к развитию и поведению. Сами ферменты и катализаторы после реакции остаются в «прежнем» виде. Они не входят в состав продуктов реакции, а после нее их количество остается прежним. В ходе реакции их структура может временно измениться ввиду образования промежуточных соединений с субстратом. Отмечают, что ферменты и катализаторы не являются инициаторами реакции. Они ускоряют только те реакции, которые могут протекать самопроизвольно, но медленно. Ферменты не сдвигают химическое равновесие в обратимых реакциях, но способствуют его более быстрому достижению.
Процесс обмена веществ (метаболизм – «кипение» в обменном котле при сравнительно низкой температуре около +37 градусов по Цельсию) осуществляется при участии ферментов – белков, способствующих протеканию биохимических реакций. В клетке растений идут четыре реакции:
ферментационная – с побочным эффектом выделения углекислого газа,
гексомонофосфатная – с выделением водорода и углекислого газа и метаболического расщепления воды в физиологическом процессе, дающем клетке необходимую ей энергию,
фотофосфорилирования – с непосредственным использованием солнечной энергии для выработки фосфатов (и пигментов – хлорофиллов),
фотосинтеза – с поглощением солнечного света для синтеза глюкозы и выделением побочного продукта – кислорода.
Фотосинтез – поглощение двуокиси углерода из воздуха и использование солнечной энергии для превращения в углероды (крахмалы, сахара) происходит при помощи хлорофилла. Схема фотосинтеза: 6 СО>2 + 6 Н>2О + 674 кал, солнечный свет > С6 Н 12 О>2 + 6 О>2.
Живые системы можно сравнить с хорошо налаженным фабричным производством многочисленных химических превращений. Они великолепные пространственно временные организации с весьма неравномерным распределением биохимического материала. В них одни химические реакции «плавно» протекают в слабо неравновесных условиях, другие происходят «бурно». В ферментативных реакциях, связанных с работой генетического аппарата, выявлена роль магния. Магний молекулы хлорофилла в фотосинтезе участвует в трансформации световой энергии в химический потенциал растительной клетки. Магнием активируемые ферменты обеспечивают транскрипцию, трансляцию и репликацию генетического кода. Магний стимулирует, поддерживает геометрическую структуру двойной спирали ДНК, третичной структуры Т-РНК, влияет на каталитическую реакцию активности белка. Железо в молекуле гемоглобина определяет каталитическую активность фермента при связывании кислорода. Магний и железо как части каталитической активности центра фермента поддерживают геометрическую форму центра и пространственную ориентацию молекулы субстрата по отношению к активному центру. Это определяется электронной структурой атома металла, входящего в активный центр и его связью с атомами центра своими электронными орбитами. Магний и железо воздействуют на молекулу субстрата, изменяя ее электронную структуру таким образом, что она легче вступает в ферментативную реакцию. Они связывают фермент и субстрат при образовании ими промежуточного соединения, и стабилизирует это промежуточное соединение. Металлы, «цементируя» топологию фермента, не участвуют в поглощении радиации пигментными молекулами. (272. 526, 527) Химики создают энерго стимулирующие лекарства. Они собирают наноконтейнеры – «умные» молекулы с 8 ионами магния. Молекулы переносят к сосудам сердечной мышцы весь 25 Mg, который активирует сердце, когда среда становится кислой. При норме состояния сердечной мышцы эти ионы магния «дремлют».