Технологии автоматического дедуктивного распараллеливания в языке Planning C - страница 4



По тем же соображениям, в качестве конечных средств распараллеливания выбраны OpenMP, OpenCL и Cilk++, реализующие основные виды параллелизма (по данным и по задачам) на широком классе вычислительных систем. Проанализирован состав подзадач, потенциально решаемых при автоматическом распараллеливании. Показано, что такие подзадачи могут потребовать применения как стандартных автоматных, так и нестандартных сканирующих средств лексико-синтаксического анализа и средств интеллектуальной трансформации распознанных алгоритмов с генерацией программ по трансформированным алгоритмам. С учетом сказанного, в качестве программной платформы был выбран компилятор Planning C 2.0 [19], имеющий серьезные предпосылки для реализации указанных средств на базе аппарата сканеров и дедуктивных макросов, задействуемого на уровне многостадийной гибкой схемы препроцессинга, поддерживающей последовательную многократную переработку кода.

Глава 2. Встроенная трансформация программ в языке Planning C

Как уже неоднократно упоминалось, задача трансформации программы в общем случае может быть достаточно нетривиальным алгоритмом, требующим применения интеллектуальных технологий логического программирования. В таком аспекте указанная задача может быть сведена к трем основным этапам: а) разбору программы с формированием набора представленных в ней фактов и взаимосвязей между ними; б) анализу полученной базы фактов с генерацией дополнительных фактов, представляющих распараллеливающие конструкции; в) генерации выходной программы на основе результирующего набора фактов.

Соответственно, целью данной главы является определение набора языковых средств Planning C 2.0, на базе которых могут быть реализованы все вышеупомянутые этапы.

Для реализации данной цели необходимо решить задачи по реализации вышеупомянутых этапов с применением логического программирования или его элементов.

2.1. Дедуктивные макромодули: средства решения задач распараллеливания и генерации выходной программы

Первоначально в языке Planning C дедуктивные макромодули предназначались для гибкой генерации описаний вычислительных топологий (этим и объясняются некоторые их не вполне очевидные синтаксические особенности), впоследствии же их применение было расширено: в настоящее время дедуктивные макромодули используются для гибкой дедуктивной генерации произвольных фрагментов программы на основе логических правил, записанных на языке GNU Prolog, имеющем бесплатный и свободно распространяемый интерпретатор. Как будет показано в настоящей работе, дедуктивные макромодули вполне могут сгенерировать и полноценную параллельную программу.

Дедуктивный макромодуль является совокупностью статических и динамических (генерируемых на одной из стадий компиляции в ходе применения предикатов GNU-Prolog) элементов. Он оформлен в виде специального программного блока и имеет параметры, в зависимости от которых им генерируется фрагмент программного кода. Соответствующий код будет вставлен в программу в точке обращения к макромодулю, в котором будут указаны конкретные значения его параметров. Предполагается, что макромодуль будет генерировать код на этапе компиляции, точнее, на стадии препроцессинговой обработки. Соответственно, это накладывает определенные ограничения на возможные значения его параметров – это должны быть выражения, которые можно вычислить на этапе препроцессинга: предположим, что это выражения, содержащие исключительно именованные и неименованные константы, в том числе те, которые формируются в результате классических макроподстановок C/C++.