Теорема века. Мир с точки зрения математики - страница 40



уравнений четвертого порядка к системе 6n уравнений второго порядка. Тогда стоит допустить, что эти 3n вспомогательных переменных представляют координаты n невидимых молекул, и результат снова окажется в согласии с законом инерции.

Итак, этот закон, проверенный экспериментально в некоторых частных случаях, может быть без опасения распространен на самые общие случаи, так как мы знаем, что в этих общих случаях опыт уже не может ни подтвердить его, ни быть с ним в противоречии.

Закон ускорения. Ускорение тела равно действующей на него силе, деленной на его массу.

Можно ли проверить на опыте этот закон? Для этого нужно было бы измерить три величины, входящие в его выражение: ускорение, силу и массу.

Отвлекаясь от трудности, связанной с измерением времени, допустим, что возможно измерить ускорение. Но как измерить силу или массу? Мы не знаем даже, что это такое.

Что такое масса? Это, отвечает Ньютон, произведение объема на плотность. Лучше сказать, возражают Томсон и Тэт, что плотность есть частное от деления массы на объем. Что такое сила? Это, отвечает Лагранж, причина, производящая или стремящаяся произвести движение тела. Это, скажет Кирхгоф, произведение массы на ускорение. Но тогда почему не сказать, что масса есть частное от деления силы на ускорение.

Эти трудности непреодолимы. Определяя силу как причину движения, мы становимся на почву метафизики, и если бы таким определением пришлось удовольствоваться, оно было бы абсолютно бесплодно. Чтобы определение могло быть к чему-нибудь пригодно, оно должно научить нас измерению силы; к тому же этого условия и достаточно; нет никакой необходимости, чтобы определение научило нас тому, что такое сила сама по себе, или тому, есть ли она причина или следствие движения.

Итак, прежде всего надо определить равенство двух сил. Когда говорят, что две силы равны? Тогда, отвечают нам, когда, будучи приложены к одной и той же массе, они сообщают ей одно и то же ускорение или когда, будучи прямо противоположно направлены, они взаимно уравновешиваются. Но это определение совершенно призрачно. Силу, приложенную к данному телу, нельзя отцепить от него и прицепить затем к другому телу вроде того, как отцепляют локомотив, чтобы сцепить его с другим поездом. Поэтому и нельзя знать, какое ускорение данная сила, приложенная к данному телу, сообщила бы другому телу, если бы была к нему приложена. Нельзя также знать, каково было бы действие двух сил, не прямо противоположных, в том случае, если бы они были прямо противоположны.

Это именно определение и стараются, так сказать, материализовать, когда измеряют силу динамометром или уравновешивают ее грузом. Две силы F и F’, которые я для простоты предположу вертикальными и направленными снизу вверх, приложены соответственно к двум телам С и С’; я подвешиваю одно и то же тело веса Р сначала к телу С, потом к С’; если в обоих случаях имеет место равновесие, то я заключу, что две силы F и F’, будучи обе равны весу Р, равны между собою.

Но уверен ли я, что тело Р сохранило тот же вес, когда я перенес его от первого тела ко второму? Вовсе нет, я уверен как раз в противном; я знаю, что напряжение силы тяжести меняется при переходе от одной точки к другой и что оно, например, больше на полюсе, чем на экваторе. Бесспорно, эта разница ничтожна, и на практике я не стал бы принимать ее в расчет; но правильное определение должно обладать математической точностью, а этой точности здесь нет. Сказанное относительно тяжести, очевидно, применимо и к упругой силе динамометра, которая может меняться в зависимости от температуры и от многих других обстоятельств.