Теорема века. Мир с точки зрения математики - страница 41



Это не все: нельзя сказать, что вес тела Р приложен к телу С и прямо уравновешивает силу F. То, что приложено к телу С, есть действие А тела Р на тело С; тело Р в свою очередь находится под действием, с одной стороны, своего собственного веса, с другой – противодействия R тела С на тело Р. В результате сила F равна силе A, потому что уравновешивает ее; сила А равна R в силу принципа равенства действия противодействию; наконец, сила R равна весу Р, потому что его уравновешивает. Уже как следствие этих трех равенств мы выводим равенство F и веса Р.

Таким образом, при определении равенства двух сил нам приходится опираться на принцип равенства действия и противодействия; значит, этот последний принцип мы должны считать уже не как экспериментальный закон, а как определение.

Итак, устанавливая равенство двух сил, мы пользуемся двумя правилами: равенством двух взаимно уравновешивающихся сил и равенством действия противодействию. Но выше мы видели, что этих двух правил недостаточно; мы вынуждены прибегнуть к третьему правилу и допустить, что некоторые силы, как, например, вес тела, постоянны по величине и направлению. Но это третье правило, как я сказал, представляет собой экспериментальный закон и оно верно лишь приближенно; опирающееся на него определение – плохое определение.

Итак, нам приходится вернуться к определению Кирхгофа: сила равна массе, умноженной на ускорение. Теперь этот «закон Ньютона» выступает уже не как экспериментальный закон, а только как определение. Но это определение еще недостаточно, так как мы не знаем, что такое масса. Правда, он позволяет нам вычислить отношение двух сил, приложенных к одному и тому же телу в разные моменты, но он ничего не сообщает нам об отношении двух сил, приложенных к двум различным телам.

Для дополнения его придется снова прибегнуть к третьему закону Ньютона (равенство действия и противодействия), рассматривая последний опять-таки не как экспериментальный закон, а как определение. Два тела А и В действуют друг на друга; ускорение А, умноженное на массу А, равно действию В на А, таким же образом, произведение ускорения В на его массу равно противодействию А на В. И так как по определению действие равно противодействию, то массы А и В будут обратно пропорциональны ускорениям двух этих тел. Этим отношение наших двух масс определено, и дело опыта – проверить, что это отношение постоянно.

Все было бы хорошо, если бы два тела А и В были единственными, с которыми приходится считаться, и были изолированы от действия остального мира. Но этого нет; ускорение тела A зависит не только от действия тела В, но и от действия множества других тел: С, D и т. д. Поэтому, чтобы применить предыдущее правило, нужно было бы разложить ускорение тела A на несколько составляющих и выделить из них ту, которая обусловлена действием тела В.

Это разложение было бы еще возможно, если бы мы допустили, что действие С на А просто прикладывается к действию В на А, так что присутствие тела С не изменяет действия В на А и присутствие В не изменяет действия С на А; следовательно, если бы мы допустили, что любые два тела притягиваются, что их взаимное действие направлено по соединяющей их прямой и зависит только от их расстояния, словом – если бы мы допустили гипотезу центральных сил.

Известно, что для определения масс небесных тел пользуются совершенно иным принципом. Закон тяготения учит нас, что притяжение двух тел пропорционально их массам; если