Terra Urbana. Города, которые мы п…м - страница 28
Напротив, древнегреческая математика быстро превращается в особую форму теоретического знания, которое в классическую эпоху рассматривалось как обособленное по предмету и крайне важное методически (не даром девизом Академии Платона было «не геометр да не войдет» – знание начинается с математики!). «Коренное преобразование математики» принято связывать с Пифагором (около 570–490 г. до н. э.), которому «принадлежит первое построение геометрии как дедуктивной науки»[79]. И хотя современные исследователи выражают сомнения в аутентичности значительной части приписываемых Пифагору воззрений, в частности знаменитой числовой онтологии, о которой речь пойдет ниже, даже если они являются позднейшим изобретением Аристотеля и платоников[80], это никак не меняет их значения.
Одной из важнейших особенностей античности стало придание числам онтологического статуса и отождествление исчислимости с познаваемостью. «Раз окружающий нас мир познаваем, а то, что неограниченно по числу, величине или форме, познано быть не может, значит, в мире действует ограничивающее начало. Оно полагает предел вещам и вносит в мир определенность, давая возможность вычислить и измерить нечто, найти его число, то есть познать»[81].
Восхождение троичности
Изучение свойств чисел – одно из старейших и важнейших направлений математики. И среди всех чисел совершенно особое значение в античной традиции получило число «3». Согласно Аристотелю (ссылавшемуся в этом вопросе на пифагорейцев), тройка является числовым определением тела как целостности: «тело – единственная законченная величина, ибо одно только оно определяется через число три, а «три» равнозначно «целому»» («О небе», 268а:20). Речь в данном случае идет об определенности (исчислимости) тела в трех измерениях – оно всегда присутствует в трех измерениях и всегда конечно (определено). Здесь же Аристотель приводит и «лингвистический» аргумент, указывая, что обобщающее местоимение «все» мы используем для множеств, начинающихся с трех предметов: мы говорим «оба» для двух и «все» для трех и больше. Отметим, что во многих языках существует грамматическое «двойственное» число – специальные формы фонетического обозначения, используемые в том случае, когда речь идет именно о двух предметах; с этой точки зрения «единица», «двоица» и «троица» оказываются разделены грамматически, и все «количества», превышающие «двойку», подчиняются правилам, действие которых начинается с «тройки»[82]. Любопытно в этой связи, что древние египтяне для обозначения множества использовали иероглиф, обозначающий число 3 (и начертанием совпадающий с римской цифрой 3 – III).
Согласно преданию, Пифагор говорил, «что нужно трижды совершать возлияние богам и что Аполлон прорицает с треножника из-за того, что тройка – первое по природе число»[83]. Первой по природе тройка оказывается потому, что является «порождением» (суммой) единицы и двоицы – Первоначала (монады) и изменчивости (с которой ассоциируются делимые нацело четные числа), мужского и женского, неизменного и подвижного и т. д. Тройка олицетворяет определенность, восстановленное равновесие чётного (двоица) и нечётного (единица, монада), – определенность, которая также трактуется как рождение (результат соединения единицы и двоица), то есть как результат единения Отца и Матери в Сыне (Первом Рожденном).
Троица символизирует в равной мере определенность во времени (единство прошлого, настоящего и будущего), в пространстве (четно-нечетное число, соединяющее единицу и двоицу, и как число, которому соответствует число пространственных измерений – длина, ширина и высота – и первая замкнутая геометрическая фигура – треугольник) и в жизни (становлении) – как отношение между рождающим (единица и двоица «спрятаны» в тройке, которая образует их сумму) и рожденным (тройка – это новое число, а не просто единица и двойка). Неудивительно, что столь универсальная значимость принципа троичности подталкивала пифагорейцев к признанию определяющей роли математики и чисел в системе мироздания: «…так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего. ‹…› Они видели, что свойства и соотношения, присущие гармонии, выразимы в числах; так как, следовательно, им казалось, что все остальное по своей природе явно уподобляемо числам и что числа – первое во всей природе, то они предположили, что элементы чисел суть элементы всего существующего и что все небо есть гармония и число»