Удивительная генетика - страница 8



Особый интерес представляют митохондрии – энергетические станции клетки (в растительных клетках их аналогом являются хлоропласты). Эти органеллы обладают развитой системой собственных эндомембран, которые являются продолжением их двуслойной оболочки и образуют внутренние выпячивания – кристы. В клетке имеется от ста пятидесяти до полутора тысяч митохондрий, а у крупных простейших их количество достигает полумиллиона. Окисляя органические вещества, митохондрии накапливают энергию в форме аденозинтрифосфата (АТФ), которой и снабжают клетку. Хлоропласты растительных клеток осуществляют процессы фотосинтеза, то есть преобразуют энергию солнечного света в энергию химических связей сложной органики, прежде всего углеводов. Из простых веществ, вроде углекислого газа и воды, они синтезируют сложные органические соединения. Как митохондрии, так и пластиды располагают собственным генетическим аппаратом – кольцевой молекулой ДНК и могут размножаться самостоятельно, вне зависимости от деления клетки.

Но почему все-таки митохондрии и хлоропласты так непохожи на большинство органелл и выглядят явными «чужаками»? На этот вопрос отвечает теория эндосимбиоза, согласно которой митохондрии и хлоропласты являются потомками древних прокариот вроде современных бактерий и одноклеточных сине-зеленых водорослей (цианобактерий). В незапамятные времена они проникли в более крупные клетки и поселились там на правах симбионтов.

И действительно, митохондрии животных клеток и хлоропласты растительных, занятые добыванием и преобразованием энергии для внутриклеточных биохимических и генетических процессов, чрезвычайно похожи на самостоятельные одноклеточные организмы. Они отграничены от цитоплазмы хозяйской клетки полноценной двойной мембраной, имеют свой собственный генетический аппарат и размножаются относительно независимо от деления всей клетки и ее ядра.

Этим сходство митохондрий с бактериями не ограничивается: например, все их белки начинаются с одной и той же экзотической аминокислоты – N-формилметионина. Он весьма распространен у бактерий, но не встречается в белках, кодируемых ядерными генами эукариотической клетки.

И хотя существуют альтернативные гипотезы происхождения органелл эукариотических клеток, подавляющее большинство ученых разделяют теорию эндосимбиоза. Например, у современного исследователя В. Г. Дебабова сомнений нет никаких: «Предшественниками митохондрий были протеобактерии, а предшественниками хлоропластов – цианобактерии».

Недавно этот сугубо академический вопрос об эволюционном происхождении митохондрий нашел подтверждение в практической медицине. Речь идет о сепсисе, который в обиходе называют заражением крови. Обычно он возникает как осложнение местного нагноительного процесса, когда микроорганизмы из первичного очага проникают в кровяное русло и начинают бурно размножаться.

Однако бывает так, что несмотря на типичную клиническую картину острого сепсиса, микробы в крови больных отсутствуют. Это парадоксальное состояние (сепсис без сепсиса) встречается при тяжелых внутренних травмах (но без открытых ран или повреждений кишечника) и получило название «синдром системного воспалительного ответа». Излишне говорить, что ударные дозы антибиотиков в этом случае бесполезны: бактерий в крови нет, и антибиотикам просто не на что действовать.

Долгое время «сепсис без сепсиса» оставался загадкой, и вот совсем недавно ответ удалось найти. При тяжелых травмах внутренних тканей из разрушенных клеток в кровь поступает огромное количество митохондрий и их обломков, которые и запускают воспалительную реакцию. Из-за сходства с бактериями иммунная система считает их опасными микробами, поднимает тревогу и запускает каскад реакций, как при реальной инфекции. А в обычных условиях нам ничего не грозит, поскольку митохондрии плавают внутри клеток, так что их гены и белки остаются для иммунной системы невидимыми.