Ух ты, искусственный… интеллект! - страница 4



Учить математическому мышлению надо со школьной скамьи. Инспектор Бельмесов своими «умными», а фактически – провокационными вопросами, создает не проблемную дидактическую[5]ситуацию, не учит математической логике, а отбивает всякое уважение к математике. Не научив самостоятельно, математически-конкретно мыслить в процессе обучения, глупо требовать этого от школьников на экзамене.

Дважды два четыре – и никак иначе! «А что? Разве неправильно?» – удивится учитель математики.

«Вы уверены, – спрашивает их Э. В. Ильенков, – что это несомненная и бесспорная истина? Да? В таком случае из вас никогда не вырастет математик… «Абсолютной и бесспорной» эта истина остается до тех пор, пока умножению (сложению) подвергаются абстрактные единицы (одинаковые значки на бумаге)… Сложите (фактически – слейте) в реальной жизни вместе две и две капли воды (уже конкретные вещественные единицы – О. П.) – и вы получите все, что угодно, но не четыре. Может быть, одну каплю, а может, – сорок четыре брызга» [13. С. 51]. «Что вы детям мозги забиваете! – окончательно рассердится учитель-формалист. – Причем здесь какие-то капли воды? Загляните, наконец, в таблицу умножения! Для счетчика-формалиста 2×2=4 абсолютно верно. А для физика-экспериментатора, для химика, производящего опыты? Для точных наук математика – основа основ, но это их рабочий инструмент, а не догма. Берет ученый-химик два (2) литра воды, и два (2) литра спирта, сливает (т. е. 2+2) в один сосуд и … получает не четыре (4) литра жидкости, а меньше (<). Подобное случается с физиком: при синтезе (сложении) скрупулёзно просчитанного числа (!) атомов в ядерных реакциях происходит уменьшение исходного количества атомов. Мало того, наблюдается (вопреки формальной математике) так называемый дефект массы – т. е. уменьшение массы вещества…» в процессе опытов [13. С. 51]. Ученый, воспитанный в школе учителем-педантом, в таких случаях впадает в ступор; он лихорадочно ищет ошибку в математических расчетах. Но математика не виновата, виновато отсутствие у человека математической логики, гибкости математического мышления. Мышление математика заставляет ученого воображать, фантазировать, т. е. зримо представить себе то, что не видит. К примеру, идти от абстрактного к конкретному, к конкретно-всеобщему.

А нейробиологи, которые заняты созданием математической модели мозга? Не обращая внимания на такой «малюсенький» факт, что человеческий мозг состоит почти из 90 млрд нейронов, но самое главное, что все они разные. И как им, нейробиологам, это качество разнообразия перевести в математическое «однообразное» количество? Без союза с материалистической диалектикой ученый не овладеет подлинной математической логикой. «Действительный математик мыслит тоже в полной мере конкретно, как и физик, как и биолог, как и историк. Он рассматривает тоже не абстрактные закорючки, а самую постоянную действительность, только под особым аспектом, свойственным математике. Это умение видеть окружающий мир под углом зрения количества и составляет специальную черту мышления математика» [8. С. 39].

«Однако вы слишком забежали вперед!» – упрекнет автора проницательный читатель. И будет прав. Поэтому вернемся к истории вычислений, к истокам алгоритмического мышления. Наш далекий предок, применяя пальцы для счета, начал использовать их и для обозначения длины, даже расстояний. Так на Руси появились такие критерии длины, как «