Величайшие математические задачи - страница 8



Так или иначе, доказательство – это единственный надежный инструмент, при помощи которого математики могут убедиться в собственной правоте. Предвидя реакцию математического сообщества, исследователи тратят огромные усилия на проверку собственных выводов и поиск противоречий в них. Так проще. Если же история успешно выдерживает критический анализ коллег, сообщество вскоре приходит к выводу, что она верна, и в этот момент создатель доказательства получает заслуженные похвалы и награды. Во всяком случае, обычно бывает именно так, хотя непосредственным участникам событий это может видеться иначе. Когда ты вовлечен во что-то, то воспринимаешь все не так, как сторонний наблюдатель.


Как математики решают задачи? Этот вопрос почти не изучался. Современные образовательные исследования на базе когнитивистики в основном ограничиваются изучением образования от начальной до высшей школы. Есть исследования, посвященные преподаванию математики в вузах, но их не так уж много. Кроме того, есть большая разница между освоением и преподаванием математики и новыми исследованиями в этой области. Многие из нас умеют играть на каком-нибудь музыкальном инструменте, но мало кто способен сочинить симфонический концерт или хотя бы написать популярную песенку.

Когда речь заходит о творчестве на высочайшем уровне, почти все, что мы знаем – или думаем, что знаем, – мы получаем путем самоанализа. Мы просим математиков объяснить ход их мыслей и пытаемся выделить в этих описаниях общие принципы. Одной из первых серьезных попыток понять, как думают математики, можно считать книгу Жака Адамара «Исследование психологии процесса изобретения в области математики»[1], вышедшую в 1945 г. Адамар расспросил ведущих математиков и физиков своего времени и попросил описать, как они думают в процессе работы над сложной задачей. И тут выявилась важная и даже необходимая роль того, что за неимением лучшего термина следует назвать интуицией. Их мысли направляло нечто подсознательное. Самые плодотворные их идеи и озарения не приходили постепенно, в результате логической пошаговой проработки, а возникали неожиданно, и весь процесс развивался скачкообразно.

Одно из самых подробных описаний этого на первый взгляд нелогичного подхода к логическим вопросам дал французский математик Анри Пуанкаре – один из ведущих ученых конца XIX – начала XX в. Пуанкаре отметился едва ли не во всех областях математической науки, внес радикальные изменения во многие из них и основал несколько новых ее разделов. В последующих главах мы не раз будем возвращаться к его работам. Кроме того, Пуанкаре писал научно-популярные книги, и, возможно, именно огромный опыт и широта кругозора помогли ему глубже понять процесс собственного мышления. Во всяком случае, он был твердо убежден, что осознанная логика – лишь часть творческого процесса. Да, бывают моменты, когда без нее не обойтись: к примеру, без логики невозможно понять, в чем именно состоит проблема, как невозможно и проверить полученный ответ. Но в промежутке, считал Пуанкаре, его мозг нередко работал над задачей самостоятельно, ничего не сообщая хозяину, причем работал так, что хозяин был просто не в состоянии постичь его методы.

Его описание творческого процесса различает три ключевых этапа: подготовка, вынашивание и озарение. Подготовка представляет собой сознательные логические усилия, направленные на то, чтобы увидеть проблему, точно сформулировать ее и попробовать решить традиционными методами. Этот этап, когда подсознание получает задание и материал для работы, Пуанкаре считал очень важным. Вынашивание происходит, когда вы прекращаете думать о задаче, отвлекаетесь от нее и занимаетесь чем-то другим. А подсознание тем временем начинает перебирать и комбинировать идеи, часто довольно дикие, и продолжается это до тех пор, пока вдали не забрезжит свет. Если повезет, результатом станет озарение: подсознание даст вам сигнал, и в вашем мозгу как будто вспыхнет лампочка – возникнет готовый ответ.