Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - страница 6
Конечно же, уважаемые компании в сфере страхования имущества и ответственности не спешат уступать дорогу конкурентам. Крупная японская страховая компания Sompo Holdings (где я работаю советником) развивает технологии ИИ в нескольких направлениях (хотя стартапы вроде Lemonade пока не столь опасны в Японии). Sompo Holdings одной из первых начала эксперимент с применением интеллектуального агента IBM Watson в сфере обслуживания клиентов. Он создает прогностические модели, используя технологию автоматизированного машинного обучения. При помощи ИИ он извлекает ключевые данные из запросов на страхование бизнеса, а также моделирует метеорологические данные с применением технологий машинного обучения. Генеральный директор Sompo Кенго Сакурада и директор компании по информационным технологиям Коити Нарасаки прекрасно знают, что ИИ способен преобразовать их бизнес, и полны решимости активно исследовать технологию.
Что мы называем искусственным интеллектом и когнитивными технологиями?
Вообще говоря, ИИ и когнитивные технологии используют возможности, которыми ранее обладали только люди (а именно знание, понимание и восприятие), для решения узко определенных (при текущем состоянии технологий) задач. Как правило, это задачи, с которыми быстро справляется любой человек, – идентификация изображений или трактовка смысла предложений. Когда-то решение этих задач было под силу только человеческому мозгу (поэтому они и входят в категорию когнитивных). Немногие сегодня готовы спорить с этим громким определением, хотя не утихают дискуссии о том, насколько близко ИИ подошел к дублированию структур и функций мозга (на мой взгляд, он еще достаточно далек от этого).
Однако важно понимать, что в повседневном применении терминов «искусственный интеллект» и «когнитивные технологии» наблюдается значительная неопределенность. Кое-кто включает в спектр в высокой степени статистические технологии вроде машинного обучения, хотя машинное обучение имеет больше общего с традиционной аналитикой, чем с другими формами ИИ. Некоторые из тех, кто считает машинное обучение искусственно интеллектуальным, даже предпочитают этот термин термину «искусственный интеллект». Кое-кто включает в сферу ИИ технологию роботизированной автоматизации процессов (RPA), которая пока не демонстрировала особой интеллектуальности. Я намереваюсь использовать термин «искусственный интеллект» в самом широком смысле, отчасти потому, что мир, похоже, склоняется именно к этому, а отчасти потому, что все технологии, претендующие на звание искусственного интеллекта, со временем действительно становятся более интеллектуальными.
На основании этого можно сделать вывод о существовании еще одной сложности в использовании ИИ на предприятиях: дело в том, что технологий ИИ достаточно много и большинство из них можно применять несколькими способами, приспосабливая для выполнения различных функций. Комбинации технологий и функций достаточно сложны – настолько, что исследователь ИИ Крис Хэммонд даже предложил «периодическую систему» ИИ[12]. Далее приведена таблица, в которой перечисляются семь ключевых технологий, дается краткое описание каждой из них, а также называются сферы их применения и типичные функции.
Я также опишу, насколько распространена каждая из технологий в мире бизнеса. Я работаю со многими компаниями и прежде всего являюсь профессором в бизнес-школе, но также занимаю должность старшего советника по стратегии и аналитике в Deloitte, что предполагает оказание консалтинговых услуг по вопросам искусственного интеллекта. В 2017 г. я помог подготовить и проанализировать опрос, в котором приняли участие 250 американских работников руководящего звена, осведомленных о когнитивных технологиях, то есть работающих в организациях, активно использующих такие технологии, и понимающих принципы их применения. В первую очередь участников опроса спрашивали, какие технологии используются в их компаниях.